Cross-Linguistic Analysis of LLM Performance in Academic Title Generation
- Authors: Timokhov A.D.1
-
Affiliations:
- Issue: No 5 (2025)
- Pages: 297-319
- Section: Articles
- URL: https://journals.rcsi.science/2409-8698/article/view/379155
- DOI: https://doi.org/10.25136/2409-8698.2025.5.74592
- EDN: https://elibrary.ru/QFSGSS
- ID: 379155
Cite item
Full Text
Abstract
This study evaluates the performance and nuances of several large language models — ChatGPT, Gemini, Mistral, and Llama — focusing on their capacity to generate academic article titles in both Russian and English. The analysis explores how these models perform in terms of linguistic quality and cross-linguistic adaptation, as well as their adherence to established conventions of different academic traditions. Drawing on a diverse corpus of 100 academic articles published between 2018 and 2023 across humanities and technical fields in both languages, the research examines the ability of these models to handle a wide spectrum of subject matter and genre-specific demands. Special attention is given to identifying differences between models, both in terms of stylistic and structural preferences and in the context of cross-linguistic adaptation when generating titles in Russian and English. Employing unified zero-shot prompts based on concise summaries of the original articles, the models generated alternative titles, which were subsequently analysed according to their level of detail, terminological accuracy, and stylistic conformity to academic conventions. The findings indicate that all tested models are generally capable of producing relevant and genre-appropriate titles; however, they exhibit clear differences in informativeness, granularity, and stylistic nuance, each demonstrating its own generation strategy. This paper offers the first comparative multilingual analysis of several large language models within the context of academic discourse, introducing the linguistic community and academia to an emerging type of research material — AI-generated texts, as opposed to conventionally authored texts produced directly by humans. Despite demonstrating considerable potential as preliminary aids in generating academic titles, variations in informativeness and style among models highlight the necessity for careful editorial oversight. AI-generated titles should thus be viewed as initial drafts that require refinement to ensure full compliance with academic standards.
About the authors
Alexey Dmitrievich Timokhov
Email: timokhovad@mgpu.ru
ORCID iD: 0000-0003-4626-9120
References
- Вахтерова Е. В. Исследование академического дискурса в отечественной и зарубежной лингвистике // Глобус. 2021. № 1 (58). С. 22-26. EDN: JNENZS. doi: 10.52013/2658-5197-58-1-7.
- Зубкова Л. И. Конститутивные признаки академического дискурса // Известия ВГПУ. 2009. № 5. С. 28-32. EDN: LPAWPB.
- Попова Т. П. Некоторые особенности академического дискурса // Известия ВГПУ. 2015. № 7 (102). С. 85-91. EDN: UZBHWJ.
- Тимохов А. Д. Нейрокорпус заголовков и аннотаций к научным публикациям на русском и английском языках [Электронный ресурс]. URL: https://drive.google.com/drive/u/1/folders/1yHUHT1mwRo42HxMOBXfuCYOU1TQ01noP (дата обращения: 19.05.2025).
- Хутыз И. П. Особенности конструирования академического дискурса: ориентация на читателя / автора // Вестник Майкопского государственного технологического университета. 2015. № 1. С. 77-82. EDN: TRZRRJ.
- Хутыз И. П. Лингвокультурные традиции в пространстве академического дискурса: особенности конструирования // Вестник Московского городского педагогического университета. Серия: Филология. Теория языка. Языковое образование. 2016. № 3 (23). С. 86-93. EDN: WLSIZF.
- Черкунова М. В. Малоформатный текст: к определению понятия (теоретические аспекты) // Известия Саратовского университета. Новая серия. Серия Филология. Журналистика. 2022. № 3. С. 248-253. EDN: BTSHTN. doi: 10.18500/1817-7115-2022-22-3-248-253.
- Шпенюк И. Е. Научно-академический дискурс как институциональный тип дискурса // Известия Гомельского государственного университета им. Ф. Скорины. 2016. № 4 (97). С. 132-137. EDN: WWIFGV.
- Шутова Н. М., Померанец И. Б. Аннотация к научной статье на английском и русском языках: сопоставительный анализ и проблемы перевода // Филологические науки. Вопросы теории и практики. 2020. № 10. С. 318-324. EDN: GUGPZI. doi: 10.30853/filnauki.2020.10.62.
- Altmäe S., Sola-Leyva A., Salumets A. Artificial intelligence in scientific writing: a friend or a foe? // Reproductive BioMedicine Online. 2023. V. 47. No 1. Pp. 3-9. doi: 10.1016/j.rbmo.2023.04.009. EDN: VWHRLW.
- Attention Is All You Need / Vaswani A., Shazeer N., Parmar N. et al. // Advances in Neural Information Processing Systems. 2017. V. 30. Pp. 5998-6008.
- Benichou L. The role of using ChatGPT AI in writing medical scientific articles // Journal of Stomatology, Oral and Maxillofacial Surgery. 2023. V. 124. No 5. Pp. 1-5. doi: 10.1016/j.jormas.2023.101456. EDN: FUZCSY.
- Bennett K. English Academic Discourse: Hegemonic Status and Implications for Translation (with particular reference to Portuguese). Lambert Academic Publishing. 2012. 284 p.
- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding / Devlin J., Chang M.-W., Lee K. et al. // Proceedings of NAACL-HLT 2019. 2019. Pp. 4171-4186.
- Brown T., Mann B., Ryder N. et al. Language Models are Few-Shot Learners // Advances in Neural Information Processing Systems. 2020. V. 33. Pp. 1877-1901.
- Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in NLP / Liu P., Yuan W., Fu J. et al. // ACM Computing Surveys. 2021. V. 55. No 9. Pp. 1-35.
- On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? / Bender E. M., Gebru T., McMillan-Major A. et al. // Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency. 2021. Pp. 610-623.
- On ChatGPT and beyond: How generative artificial intelligence may affect research, teaching, and practice / Peres R., Schreier M., Schweidel D. et al. // International Journal of Research in Marketing. 2023. V. 40. No 2. Pp. 269-275. doi: 10.1016/j.ijresmar.2023.03.001. EDN: LMXQWJ.
- Özcan A., Polat S. Artificial Intelligence and Chat Bots in Academic Research // Journal of Research in Social Sciences and Language. 2023. V. 3. No 2. Pp. 81-90.
- The Role of Artificial Intelligence in Scientific Writing / Kammer M. N., Gomila P., Vumbaco D. J. et al. // Journal of Clinical Case Reports, Medical Images and Health Sciences. 2023. V. 3. No 3. Pp. 1-6. doi: 10.55920/jcrmhs.2023.03.001116. EDN: XTXHCE.
- Salvagno M., Taccone F. S., Gerli A. G. Can artificial intelligence help for scientific writing? // Critical Care. 2023. V. 27. No 75. Pp. 1-5.
- Opinion Paper: “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy / Dwivedi Y. K., Kshetri N., Hughes L. et al. // International Journal of Information Management. 2023. V. 71. P. 102642. doi: 10.1016/j.ijinfomgt.2023.102642. EDN: GFXYHE.
Supplementary files

