Indicators for assessing the risk of execution of state contracts with a long life cycle

Abstract

The subject of the study is the process of monitoring the execution and assessing the risk of execution of government contracts in the Russian Federation. The research methodology consists of studying statistical data on government procurement in Russia; enriching data from the UIS with additional data from market analysis systems; analyzing the subject area and identifying potentially valuable categorical data that have not been previously studied by other scientists and applying the tools of one-way analysis of variance to these data in order to assess their statistical significance for solving problems of predicting the execution of government contracts. By applying the ANOVA method to a dataset that included more than 83 thousand consolidated records, results were obtained confirming the significance of a number of categorical features relating to the supplier’s industry, its legal form and region for predicting the execution of government contracts. At the same time, it was revealed that such characteristics as form of ownership, method of placing an order, legal category of the size of the supplier’s business and budget level are not statistically significant for forecasting purposes. The results obtained can be used by researchers in the course of cluster analysis, exploratory data analysis, and when constructing an ensemble of models for predicting the execution of government contracts. The results obtained expand and deepen existing approaches in terms of searching for new significant features based on information capabilities contained in government information systems and other big data sources.

References

  1. Тихомиров П. А. Реестр недобросовестных поставщиков: требуется совершенствование // Российское конкурентное право и экономика. 2020. №4. С. 70-83.
  2. Юдин А. А., Тарабукина Т. В. Мониторинг, аудит и контроль в контрактной системе закупок // Московский экономический журнал. 2022. №1. С. 408-418.
  3. Стырин Е. М., Родионова Ю. Д. Единая информационная система в сфере закупок как государственная цифровая платформа: современное состояние и перспективы // Вопросы государственного и муниципального управления. 2020. №3. С. 49-70.
  4. Khosrowshahi F.. Neural network model for contractors’ prequalification for local authority projects // Engineering, Construction and Architectural Management. 1999. №6 Pp. 315–328.
  5. Елисеев Д. А., Романов Д. А. Машинное обучение: прогнозирование рисков госзакупок // Открытые системы. СУБД. 2018. № 2. С. 42-44.
  6. Acheamfour, V. K., Kissi E., Adjei-Kumi T., Adinyira E. Review of empirical arguments on contractor pre-qualification criteria // Journal of Engineering, Design and Technology. 2020. № 18(1), Pp. 70-83.
  7. Sanjana P., Basavaraj K., Pranali D, Kashmira P. Review of Contractor Prequalification Criteria and their Impact on Project Success Factors // International Journal of Research in Engineering, Science and Management. 2020. №3(7). Pp. 298-302.
  8. Созаева Д.А., Гончар К.В. Исследование рисков расторжения контрактов, заключенных по результатам госзакупок // Проблемы анализа риска. 2022. №3. С. 74-85.
  9. El-Sawalhi N., Eaton D., Rustom R. Contractor pre-qualification model: State-of-the-art // International Journal of Project Management. 2007. №25. Pp. 465–474.
  10. Zedan A. Сontractor selection using multiattrlbute utility theory. Doctor of Philosophy Thesis. UK, Salford: University of Salford, 1996.
  11. Цыганова М. С., Чернушенко Д. А., Буреш С. В. Система прогнозирования участников государственных закупок по федеральным законам № 44-ФЗ и № 223-ФЗ // Вестник Череповецкого государственного университета. 2022. № 3 (108). С. 61-76.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).