Trace as a Sign: Epistemology and Methodology of Digital Data in Sociology

Cover Page

Cite item

Full Text

Abstract

The article is dedicated to the analysis of epistemological and methodological problems related to the integration of digital traces into empirical sociology. The relevance of the topic is determined by the growth in the volume of digital data and the necessity for their meaningful integration into the social sciences. As experience from other researchers shows, the analysis of digital behavioral data currently tends to attract criticism. This directly leads to the goal of this article—to analyze and identify the epistemological and methodological complexities of integrating digital traces into the sociological tradition, as well as to demonstrate that working with such data types is situated within a much broader historical and theoretical framework. Furthermore, the task is to justify the necessity of an interpretative approach to any volumes of digital data and emphasize the need for contextualization and critical reflection at all stages of research. The methodological basis of the article consists of general scientific methods—theoretical and methodological analysis, comparison, and generalization of scientific sources on the research problem. As a result of the research, the necessity for a comprehensive approach has been substantiated, which suggests a diverse basis for sources of digital behavioral data, a combination of quantitative analysis of digital data with interpretation, consideration of platform specificity, possible algorithmic selection in the formation of the sample of extracted data, and the need to check the authenticity of the data for automated activity. It was concluded that a critical attitude towards digital data is necessary at all stages of research and that these data should be understood as signs requiring scientific reflection rather than as ready-made empirical facts. Nevertheless, it has been identified that such a perspective can also be traced in earlier key works on non-reactive research strategies in sociology. Based on the conducted work, recommendations and examples of studies using an interpretative framework were proposed, both at the level of qualitative strategies for digital research and on scales understood in the broader discourse as Big Data.

References

  1. World Economic Forum. How much data is generated each day? [Электронный ресурс]. 2019. URL: https://www.weforum.org/stories/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/ (дата обращения: 11.04.2025).
  2. Anderson C. The End of Theory: The Data Deluge Makes the Scientific Method Obsolete // Wired [Электронный ресурс]. June 23, 2008.
  3. Губа К. Большие данные в социологии: новые данные, новая социология? // Социологическое обозрение. 2018. № 1. С. 213-236. doi: 10.17323/1728-192X-2018-1-213-236 EDN: XNYZFZ.
  4. Николаенко Г. А., Фёдорова А. А. Нереактивная стратегия: применимость незаметных методов сбора социологической информации в условиях Web 2.0 на примере цифровой этнографии и Big Data // Социология власти. 2017. № 4. С. 39-53. doi: 10.22394/2074-0492-2017-4-36-54 EDN: XSLXPV.
  5. Богданов М. Б., Смирнов И. Б. Возможности и ограничения цифровых следов и методов машинного обучения в социологии // Мониторинг общественного мнения: экономические и социальные перемены. 2021. № 1. С. 27-48. doi: 10.14515/monitoring.2021.1.1760 EDN: SXSBFV.
  6. Сапонова А. В., Куликов С. П. Интеграция опросных данных и цифровых следов: обзор основных методологических подходов // Социология: 4М. 2021. № 53. С. 117-147. doi: 10.19181/4m.2021.53.4 EDN: LUWLVB.
  7. Savage M., Burrows R. The coming crisis of empirical sociology // Sociology. 2007. Vol. 41, no. 5. P. 885-899. doi: 10.1177/0038038507080443 EDN: JPVNGP.
  8. Rokkan S. Comparing nations: The use of quantitative data in cross-national research // Merritt R. L., Rokkan S. (eds.). Comparative cross-national research: The context of current efforts. New Haven: Yale University Press, 1966. P. 3-25.
  9. Lazarsfeld P. F. A conceptual introduction to latent structure analysis // Lazarsfeld P. F. (ed.). Mathematical thinking in the social sciences. Glencoe, IL: The Free Press, 1953. P. 349-387.
  10. Webb E. J., Campbell D. T., Schwartz R. D., Sechrest L. Unobtrusive measures: nonreactive research in the social sciences. Chicago: Rand McNally, 1966. 220 p.
  11. Ginzburg C. Clues: Roots of a scientific paradigm // Theory and Society. 1979. Vol. 7, no. 3. P. 273-288. doi: 10.1007/bf00207323 EDN: ILBEOI.
  12. Bernheim E. Lehrbuch der historischen Methode und der Geschichtsphilosophie: mit Nachweis der wichtigsten Quellen und Hilfsmittel zum Studium der Geschichte. 6th ed. Berlin: Duncker & Humblot, 1908.
  13. Rava G. Traces and Their (In)significance // What People Leave Behind: Digital Footprints as Socio-Material Resource in the Age of Big Data / eds. C. Ciborra, A. Caliandro. Cham: Palgrave Macmillan, 2023. P. 329-343.
  14. Бархатова Л. А. Структурные особенности коммуникации российских социологов: кейс онлайн-сообщества // Мониторинг общественного мнения: экономические и социальные перемены. 2020. № 5. С. 204-221. doi: 10.14515/monitoring.2020.5.1656 EDN: OXNELV.
  15. Venturini T., Latour B. The Social Fabric: Digital Traces and Quali-quantitative Methods // Proceedings of Future En Seine. Paris: Cap Digital, 2010.
  16. Shelton T., Poorthuis A., Zook M. Social Media and the City: Rethinking Urban Socio-Spatial Inequality Using User-Generated Geographic Information // Landscape and Urban Planning. 2015. Vol. 142. P. 198-211.
  17. Chun W. H. K. Updating to Remain the Same: Habitual New Media. Cambridge, MA: MIT Press, 2016. 264 p.
  18. Golder S. A., Macy M. W. Digital Footprints: Opportunities and Challenges for Online Social Research // Annual Review of Sociology. 2014. Vol. 40, No. 1. P. 129-152. doi: 10.1146/annurev-soc-071913-043145.
  19. Arosio L. What People Leave Behind Online: Digital Traces and Web-Mediated Documents for Social Research // In: Comunello F., Martire F., Sabetta L. (eds.) What People Leave Behind: Digital Traces in Context. Cham: Springer, 2022. P. 311-324. doi: 10.1007/978-3-031-11756-5_20.
  20. Gillespie T. The relevance of algorithms // In: Media technologies: essays on communication, materiality, and society / eds. T. Gillespie, P. J. Boczkowski, K. A. Foot. Cambridge (MA): MIT Press, 2014. P. 167-194.
  21. Tufekci Z. Big questions for social media big data: representativeness, validity and other methodological pitfalls // Proceedings of the Eighth International AAAI Conference on Weblogs and Social Media (ICWSM-14). Michigan: AAAI Press, 2014. P. 505-514.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).