Artificial Intelligence Platforms in Education
- Authors: Kosorukov A.A.1
-
Affiliations:
- Issue: No 3 (2025)
- Pages: 40-60
- Section: ARTICLES
- URL: https://journals.rcsi.science/2409-7144/article/view/372876
- EDN: https://elibrary.ru/VXYGYQ
- ID: 372876
Cite item
Full Text
Abstract
Modern artificial intelligence (AI) platforms have a significant impact on education, they are becoming a full-fledged professional activity tool capable of optimizing learning processes and educational administration. The introduction of AI in the field of education is aimed at improving efficiency, personalizing approaches and automating routine tasks. The subject of this study is the use of AI platforms in education, their impact on the quality of services provided and the effectiveness of educational processes in the context of platform integration. In the educational field, AI platforms are being considered, including adaptive learning platforms Knewton, DreamBox Learning, Civitas Learning, IBM Watson Education, proctoring platforms ProctorU, ExamSoft, Turnitin writing quality control platforms, Grammarly, Edsight and Automated Essay Scoring creative work assessment platforms. As part of the research, data from an online survey of Russian experts representing universities from 8 federal districts and having experience working with these AI platforms is being processed. A comparative analysis method is used that identifies common and distinctive features of AI platforms based on special criteria, the integral assessment of which underlies the ranking of platforms. The scientific novelty of this study lies in a comprehensive analysis of the use of AI platforms in such a socially significant field as education. Unlike the systemic approaches of S.M. Kashchuk or B. Omodan, the study covers special issues of automated decision-making and evaluation of its effectiveness in real conditions. An important contribution of this study is the analysis of the mechanisms of AI adaptation to the individual needs of users, which is a key factor in the successful platform integration of these technologies. An expert survey based on the analysis of such special criteria as adaptability, interactivity, functionality, efficiency, accessibility, integration and innovation on a scale of "low -moderate – medium – high" allows for an integrated multi-criteria assessment of platforms based on the totality of all criteria, to build a platform rating, to identify the most promising AI platforms (in terms of interactivity and innovation – DreamBox Learning, in terms of adaptability and functionality – Knewton), as well as identify ways to overcome their limitations.
About the authors
Artem Andreevich Kosorukov
Email: kosorukov@spa.msu.ru
ORCID iD: 0000-0002-0275-4899
References
Кащук С.М. Искусственный интеллект в образовании: чего опасаться, что использовать? // Общество: социология, психология, педагогика. 2024. № 8. С. 44-49. doi: 10.24158/spp.2024.8.5. EDN: DRHSIU. Букина Т.В. Искусственный интеллект в образовании: современное состояние и перспективы развития // Общество: социология, психология, педагогика. 2025. № 1. С. 76-83. doi: 10.24158/spp.2025.1.9. EDN: LKLHXQ. Ярцева Е.Я. Интеграция искусственного интеллекта в образование // Проблемы современного педагогического образования. 2024. № 85-2. С. 398-401. EDN: HIHQVY. Поспелова Е.А., Отоцкий П.Л., Горлачева Е.Н., Файзуллин Р.В. Генеративный искусственный интеллект в образовании: анализ тенденций и перспектив // Профессиональное образование и рынок труда. 2024. № 3 (58). С. 6-21. doi: 10.52944/PORT.2024.58.3.001. EDN: AOMGBJ. Калинин А.А., Королева Н.Ю., Рыжова Н.И., Федорова Ю.В. Искусственный интеллект в образовательном контенте: актуальный тренд и практические аспекты эволюции учебного процесса // Наука и школа. 2024. № 5. С. 98-113. doi: 10.31862/1819-463X-2024-5-98-113. EDN: MRORPE. Ghimire A., Edwards J. Generative AI Adoption in the Classroom: A Contextual Exploration Using the Technology Acceptance Model (TAM) and the Innovation Diffusion Theory (IDT) // 2024 Intermountain Engineering, Technology and Computing (IETC). 2024. P. 129-134. Zhai X., Pellegrino J. Large-Scale Assessment in Science Education // Handbook of Research on Science Education. 2023. P. 1045-1097. Omodan B., Marongwe N. The role of artificial intelligence in decolonising academic writing for inclusive knowledge production // Interdisciplinary Journal of Education Research. 2024. № 6. P. 1-14. Eslit E. Thriving Beyond the Crisis: Teachers' Reflections on Literature and Language Education in the Era of Artificial Intelligence (AI) and Globalization // International Journal of Education and Teaching. 2023. № 3. P. 46-57. Qi X., Thomas K.F., Min L., Ismaila T.S., Yun D., Ching S.C. A self-determination theory (SDT) design approach for inclusive and diverse artificial intelligence (AI) education // Computers & Education. 2022. Volume 189. 104582. URL: https://doi.org/10.1016/j.compedu.2022.104582. (дата обращения: 20.03.2025). EDN: ZALCQI. Бабурчина А.И. Использование ИИ в преподавании математики для школьников среднего и старшего звена // Вестник науки. 2024. № 9 (78). С. 553-578. EDN: CKUGLH. Ковешникова Ю.В., Шушунова Т.Н. Тенденции цифровизации рынка образовательных услуг // Успехи в химии и химической технологии. 2021. № 1 (236). С. 42-44. EDN: GMNWEU.
Supplementary files

