METHOD FOR INCREASING THE UNIFORMITY OF THE GAS-AIR MIXTURE IN INTERNAL COMBUSTION TRANSPORT ENGINES

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Increasing the uniformity of the gas-air mixture in gas transport engines makes it possible to ensure more complete combustion of fuel, reduce its specific fuel consumption and exhaust gas toxicity. There are known ways to increase uniformity, but there is no generalization of their principles and applicability for various engines. The article analyzes the existing methods and identifies their shortcomings. A method has been developed to increase the uniformity of the gas-air mixture in gas transport engines by controlling the position of the gas fuel jet in the incoming air stream. The dependence for controlling the position of the gas jet in the air flow is described. The results of experiments performed by means of computer modeling with central and distributed gas supply with different gas and air pressures are analyzed. During the experiments, the coefficient of uniformity of the gas-air mixture was determined. Separately, the depth of penetration of the gas fuel jet into the incoming air stream is estimated. Based on the simulation results, the effectiveness of the method was justified.

Purpose. Development of a method for increasing the uniformity of the gas-air mixture in internal combustion transport engines.

Methodology. Modeling of the movement of a methane jet in an air stream by the finite element method was used in the work.

Results. A method for increasing the uniformity of the gas-air mixture using the inlet pressure of the gas as the main variable parameter is formulated and justified.

Practical implications. The obtained results should be used to improve the efficiency and environmental friendliness of gas transport engines.

Авторлар туралы

Aleksei Penkin

Saint-Petersburg State University of Architecture and Civil Engineering

Хат алмасуға жауапты Автор.
Email: apenkin1@gmail.com
ORCID iD: 0000-0003-1612-7906
SPIN-код: 6624-1440
ResearcherId: ABA-7855-2021

Associate Professor of the Department «Transport Maintenance», PhD in Engineering Sciences

 

Ресей, 4, 2nd Krasnoarmeiskaya Str., Saint-Petersburg, 190005, Russian Federation

Sofya Metlyakova

Saint-Petersburg State University of Architecture and Civil Engineering

Email: halbertfly@yandex.ru
SPIN-код: 5465-7254

1st-year postgraduate student of the Department of Transport Maintenance

 

Ресей, 4, 2nd Krasnoarmeiskaya Str., Saint-Petersburg, 190005, Russian Federation

Әдебиет тізімі

  1. Baturin V.V. Vozdushnye zavesy [Air curtains] / V.V. Baturin, I.A. Shepelev // «Otoplenie i ventilyatsiya». 1936. № 5.
  2. Bezmenov V.Ya. Nestatsionarnye techeniya v udarnoy trubepe remennogo secheniya [Unsteady flows in a shock tube of variable cross section] / V.Ya. Bezmenov. Moskva : Byuro nauch. informatsii TsAGI, 1959. 37 p.
  3. Varganov I.S. O krivizne osi strui v snosyashchem potoke [On the curvature of the jet axis in a drifting flow] / I.S. Varganov ; Kievskoevyssh. inzh. aviats. voen. uchilishche VVS. – Kiev : [b. i.], 1964. 10 p.
  4. Volynskiy M.S. O forme strui zhidkosti v gazovom potoke [On the shape of a liquid jet in a gas flow] / M.S. Volynskiy. M. : Oborongiz, 1958. 16 p.
  5. Girshovich T.A. Turbulentnye strui v poperechnom potoke [Turbulent jets in cross flow] / T.A. Girshovich. M. : Mashinostroenie, 1993. 251 p.
  6. Danilov Yu.M. Otsenka effektivnosti peremeshivaniya zhidkikh komponentov v malogabaritnykh trubchatykh turbulentnykh apparatakh [Evaluation of the efficiency of mixing liquid components in small-sized tubular turbulent apparatus] / Yu.M. Danilov, A.G. Mukhametzyanova, R.Ya. Deberdeev [i dr.] // Teoreticheskie osnovy khimicheskoy tekhnologii. 2011. tom 45. № 1. pp. 81-84.
  7. Ivanov Yu.V. Uravnenie traektoriy struy ostrogo dut’y a[Equation of trajectories of sharp blast jets] / Ivanov Yu.V. // Kotlo-turbostroenie. 1952. №8.
  8. Mukhametzyanova A.G. Metod yvychislitel’noy gidrodinamiki pri otsenke effektivnosti staticheskikh smesiteley nasadochnogo tipa [Methods of Computational Fluid Dynamics in Estimating the Efficiency of Packed-Type Static Mixers] / A.G. Mukhametzyanova, K.A. Alekseev // Matematicheskie metody v tekhnike i tekhnologiyakh. MMTT. 2019. T. 10. pp. 9–11.
  9. Patent № 2731558 Rossiyskaya Federatsiya, MPK F02B 43/02 (2006.01), F02B 43/04 (2006.01), F02B 43/06 (2006.01), F02B 43/12 (2006.01), F02D 19/02 (2006.01), F02M 21/02 (2006.01). Sposob podachi gazovogo topliva v dvigatel’ vnutrennego sgoraniya [Method for supplying gas fuel to an internal combustion engine] : № 2019137447 : publication date 04.09.2020 / Shishkov Vladimir Aleksandrovich.
  10. Teoriya turbulentnykh struy [Theory of turbulent jets] / G.N. Abramovich, T.A. Girshovich, S.Yu. Krasheninnikov [i dr.] ; pod red. G.N. Abramovicha. 2-e izd., pererab. i dop. M. : Nauka, 1984. 716 p.
  11. Farakhov T.M. Otsenka effektivnosti staticheskikh smesiteley nasadochnogo tipa [Evaluation of the effectiveness of packed-type static mixers] / T.M. Farakhov, A.G. Laptev // Vestnik kazanskogo gosudarstvennogo energeticheskogo universiteta, 2011. № 4. pp. 20-24.
  12. Forma strui v snosyashchem potoke [The shape of the jet in the drifting flow] / Ya.M. Vizel’, I.L. Mostinskiy. – M. : [b. i.], 1964. 74 p.
  13. Khovakh M.S. Avtomobil’nye dvigateli: Teoriya, raschet i konstruktsiya dvigateley vnutrennego sgoraniya [Automobile engines: Theory, calculation and design of internal combustion engines] : [Uchebnik dlya avtomob.-dor. tekhnikumov] / M.S. Khovakh, G.S. Maslov. 2-e izd., pererab. i dop. Moskva : Mashinostroenie, 1971. 456 p.
  14. Chausov F.F. Otechestvennye staticheskie smesiteli dlya nepreryvnogo smeshivaniya zhidkostey [Domestic static mixers for continuous mixing of liquids] / F.F. Chausov // Khimicheskoe i neftegazovoe mashinostroenie. 2009. № 3. pp. 11-14.
  15. Shandorov G.S. Istechenie iz kanala v nepodvizhnuyu i dvizhuyushchuyusya sredu [Outflow from a channel into a stationary and moving medium] / G.S. Shandorov // ZhTF. 1957. T. 27. № 1. pp. 92-108.
  16. Shepelev I.A. Osnovy rascheta vozdushnykh zaves, pritochnykh struy i poristykh fil’trov [Fundamentals of Air Curtains, Air Jets and Porous Filters] / I.A. Shepelev. M. : Stroyizdat, 1950.
  17. Al-Sulttani A.O. A Computational Fluid Dynamics Study to Optimize the Orientation of the Syngas Injector for Reducing Environmental Pollution and Performance Improvement of a Bi Engine. International Journal of Mechanical & Mechatronics Engineering, 2020, Vol. 20, № 05, pp.164-174.
  18. Jemni M.A., Kantchev G., Abid M.S. Intake manifold design effect on air fuel mixing and flow for an LPG heavy duty engine. International journal of energy and environment, 2012, vol. 3, issue 1, pp.61-72.
  19. Mahmood H., Adam N., Sahari B., Masuri S.U. Design of Compressed Natural Gas-Air Mixer for Dual Fuel Engine Using Three-Dimensional Computational Fluid Dynamics Modeling. Journal of Computational and Theoretical Nanoscience, 2017, vol. 14, pp.1-18. doi: 10.1166/jctn.2017.6605.
  20. Muhssen H.S., Masuri S.U., Sahari B., Hairuddin A.A. Computational Fluid Dynamics Investigation of Air-Gas Pre-Mixing Controller Mixer Designed for CNG-Diesel Dual-Fuel Engines. CFD letters, 2019, vol. 11, issue 6,pp. 47-62.
  21. Noor M.M., Kadirgama K., Devarajan R., Rejab R., Nik Mohamed, N., Yusaf T.F. Development of A High Pressure Compressed Natural Gas Mixer for A 1.5 Litre CNG-Diesel Dual Engine. Paper presented at the National Conference on Design and Concurrent Engineering,2008,28-29 Oct., Melaka. pp. 435-438.
  22. Patent № 2017089042 World Intellectual Property Organization, IPC F02B31/00, F02M21/02, F02M21/04, F02M35/10. «Inlet channel device» : priority data 27.11.2015 : publication date 01.06.2017 / Kristen Marcus, Schmid Reinhard, Redlich Alexander, Magel Hans-Christoph; Applicant Bosch GMBH Robert. – 18 p.
  23. Supee A., Mohsin R., Majid Z., Raiz M. Effects of Compressed Natural Gas (CNG) Injector Position on Intake Manifold towards Diesel-CNG Dual Fuel (DDF) Engine Performance. Jurnal Teknologi (Sciences & Engineering), 2014, 70:1, pp.107-115. doi: 10.11113/jt.v70.2292.
  24. Yusaf T.F., Baker, P., Hamawand I., Noor M.M. Effect of compressed natural gas mixing on the engine performance and emissions. International Journal of Automotive and Mechanical Engineering (IJAME), 2014, volume 8, pp. 1416-1429.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Penkin A.L., Metlyakova S.A., 2023

Creative Commons License
Бұл мақала лицензия бойынша қол жетімді Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».