Epigenetic mechanisms of preeclampsia: Role of plasma microRNAs
- Authors: Nikitina N.A.1, Sidorova I.S.1, Raygorodskaya M.P.2, Morozova E.A.1, Timofeev S.A.1, Ageev M.B.1, Amiraslanova N.I.1
-
Affiliations:
- I.M. Sechenov First Moscow State Medical University
- P. Hertsen Moscow Oncology Research Institute — Branch of the National Medical Research Radiological Centre
- Issue: Vol 11, No 2 (2024)
- Pages: 179-192
- Section: Original study articles
- URL: https://journals.rcsi.science/2313-8726/article/view/260552
- DOI: https://doi.org/10.17816/aog623622
- ID: 260552
Cite item
Abstract
BACKGROUND: Despite the retentive relevance of preeclampsia (PE) among the main causes of maternal morbidity and mortality, its etiology remains unclear. Despite gaps in its pathophysiology, highly effective methods of prognosis, prevention, and treatment are still not devised yet. In recent years, the use of microRNA molecules that epigenetically control the expression of target genes at the post-transcriptional level received great interest as are they of key importance in the proliferation, differentiation, invasion, migration, and apoptosis of trophoblast cells and regulation of angiogenesis, immune response, and other processes during pregnancy
AIM: This study aimed to investigate the epigenetic mechanisms of PE development based on the evaluation of the expression of pathogenetically significant microRNAs in women’s blood plasma.
MATERIALS AND METHODS: The study included 62 female patients divided into the main study group (n=42 with PE) and the control group (n = 20 healthy women with uncomplicated pregnancy, childbirth, and post-natal period). All patients have undergone general clinical, laboratory, and instrumental examinations. The expression levels of 15 microRNAs in the blood plasma were evaluated using a quantitative real-time polymerase chain reaction. DIANA miRPath v. 3.0 was used to evaluate the effect of differentially expressed microRNAs on the functioning of signaling pathways. Statistical data analyses were performed using Statistica 6.0.
RESULTS: Multidirectional changes in the expression levels of 13 of 15 plasma microRNAs were found in the PE group compared with the control group; however, the expression levels of the following eight microRNAs decreased significantly: hsa-miR-146a-5p (p=0.011), hsa-miR-181a-5p (p=0.015), hsa-miR-210-3p (p=0.031), hsa-miR-517a-3p (p=0.004), hsa-miR-517c-3p (p=0.007), hsa-miR-574-3p (p=0.048), hsa-miR-574-5p (p=0.003), and hsa-miR-1304-5p (p=0.001). The expression levels of hsa-miR-20a-5p (FC=0.39; p=0.049) and hsa-miR-143-3p (FC=0.71, p=0.05) significantly decreased in pregnant women with PE and symptoms of fetal growth retardation (FGR) compared with the subgroup without FGR. No significant differences in the expression level of the analyzed microRNAs were found between the subgroups with moderate and severe PE and early and late PE. The functional evaluation of differentially expressed microRNAs among women with PE, considering the identification of their potential target genes, revealed the dysregulation of >40 signaling pathways and biological processes in which these molecules are involved.
CONCLUSION: PE progresses alongside significant epigenetic changes accompanied by changes in the microRNA expression profile, which are associated with cardiovascular and cerebrovascular diseases and placental disorders. The detected differentially expressed microRNAs may be potential diagnostic markers of PE.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Natalya A. Nikitina
I.M. Sechenov First Moscow State Medical University
Email: natnikitina@list.ru
ORCID iD: 0000-0001-8659-9963
MD, Dr. Sci. (Medicine), Professor
Russian Federation, MoscowIraida S. Sidorova
I.M. Sechenov First Moscow State Medical University
Email: sidorovais@yandex.ru
ORCID iD: 0000-0003-2209-8662
Academician of the Russian Academy of Sciences, MD, Dr. Sci. (Medicine), Professor
Russian Federation, MoscowMaria P. Raygorodskaya
P. Hertsen Moscow Oncology Research Institute — Branch of the National Medical Research Radiological Centre
Email: maria.raygorodskaya@gmail.com
ORCID iD: 0000-0003-0527-7773
Cand. Sci. (Biology), Research Associate
Russian Federation, MoscowEkaterina A. Morozova
I.M. Sechenov First Moscow State Medical University
Author for correspondence.
Email: drstrelnikova@mail.ru
ORCID iD: 0000-0002-1670-9044
Graduate Student
Russian Federation, MoscowSergej A. Timofeev
I.M. Sechenov First Moscow State Medical University
Email: satimofeev30@gmail.com
ORCID iD: 0000-0001-7380-9255
Department Assistant
Russian Federation, MoscowMikhail B. Ageev
I.M. Sechenov First Moscow State Medical University
Email: mikhaageev@ua.ru
ORCID iD: 0000-0002-6603-804X
MD, Cand. Sci. (Medicine), Assistant Professor
Russian Federation, MoscowNigar I. Amiraslanova
I.M. Sechenov First Moscow State Medical University
Email: amiraslanova00@mail.ru
ORCID iD: 0009-0008-7446-3995
Resident
Russian Federation, MoscowReferences
- Jung E, Romero R, Yeo L, et al. The etiology of preeclampsia. Am J Obstet Gynecol. 2022;226(2S):S844–S866. doi: 10.1016/j.ajog.2021.11.1356
- Khan KS, Wojdyla D, Say L, et al. WHO analysis of causes of maternal death: a systematic review. Lancet. 2006;367(9516):1066–1074. doi: 10.1016/S0140-6736(06)68397-9
- Steegers EA, von Dadelszen P, Duvekot JJ, Pijnenborg R. Pre-eclampsia. Lancet. 2010;376(9741):631–644. doi: 10.1016/S0140-6736(10)60279-6
- World Health Organization. WHO recommendations for prevention and treatment of pre-eclampsia and eclampsia. Geneva; 2011.
- Roberts JM, Rich-Edwards JW, McElrath TF, et al. Global Pregnancy Collaboration. Subtypes of Preeclampsia: Recognition and Determining Clinical Usefulness. Hypertension. 2021;77(5):1430–1441. doi: 10.1161/HYPERTENSIONAHA.120.14781
- Roberts JM, Hubel CA. The two stage model of preeclampsia: variations on the theme. Placenta. 2009;30(Suppl. A):S32–37. doi: 10.1016/j.placenta.2008.11.009
- Fitzgerald JS, Germeyer A, Huppertz B, et al. Governing the invasive trophoblast: current aspects on intra- and extracellular regulation. Am J Reprod Immunol. 2010;63(6):492–505. doi: 10.1111/j.1600-0897.2010.00824.x
- James JL, Saghian R, Perwick R, Clark AR. Trophoblast plugs: impact on utero-placental haemodynamics and spiral artery remodelling. Hum Reprod. 2018;33(8):1430–1441. doi: 10.1093/humrep/dey225
- Allerkamp HH, Clark AR, Lee TC, et al. Something old, something new: digital quantification of uterine vascular remodelling and trophoblast plugging in historical collections provides new insight into adaptation of the utero- placental circulation. Hum Reprod. 2021;36(3):571–86. doi: 10.1093/humrep/deaa303
- Staff AC, Fjeldstad HE, Fosheim IK, et al. Failure of physiological transformation and spiral artery atherosis: their roles in preeclampsia. Am J Obstet Gynecol. 2022;226(2S):S895–S906. doi: 10.1016/j.ajog.2020.09.026
- Sidorova IS. Solved and unsolved problems of preeclampsia in Russia (Editorial). Russ Bull Obstet. 2015;15(2):4–9. doi: 10.17116/rosakush20151524-9
- Phipps E, Prasanna D, Brima W, Jim B. Preeclampsia: Updates in Pathogenesis, Definitions, and Guidelines. Clin J Am Soc Nephrol. 2016;11(6):1102–1113. doi: 10.2215/CJN.12081115
- Roberts JM, Bell MJ. If we know so much about preeclampsia. why haven’t we cured the disease? J. Reprod. Immunol. 2013;99(1–2):1–9. doi: 10.1016/j.jri.2013.05.003
- Poirier C, Desgagné V, Guérin R, Bouchard L. MicroRNAs in Pregnancy and Gestational Diabetes Mellitus: Emerging Role in Maternal Metabolic Regulation. Curr Diab Rep. 2017;17(5):35. doi: 10.1007/s11892-017-0856-5
- Enquobahrie DA, Abetew DF, Sorensen TK, et al. Placental microRNA expression in pregnancies complicated by preeclampsia. Am J Obstet Gynecol. 2011;204(2):178.e12–178.e21. doi: 10.1016/j.ajog.2010.09.004
- Luo S, Cao N, Tang Y, Gu W. Identification of key microRNAs and genes in preeclampsia by bioinformatics analysis. PLoS One. 2017;12(6)e0178549. doi: 10.1371/journal.pone.0178549
- Wu L, Zhou H, Lin H, et al. Circulating microRNAs are elevated in plasma from severe preeclamptic pregnancies. Reproduction. 2012;143(3):389–397. doi: 10.1530/REP-11-0304
- Matsubara K, Matsubara Y, Uchikura Y, Sugiyama T. Pathophysiology of Preeclampsia: The Role of Exosomes. Int J Mol Sci. 2021;22(5):2572. doi: 10.3390/ijms22052572
- Lv Y, Lu C, Ji X, et al. Roles of microRNAs in preeclampsia. J Cell Physiol. 2019;234(2):1052–1061. doi: 10.1002/jcp.27291
- Khodzhaeva ZS, Shmakov RG, Savel’eva GM, et al. Preeclampsia. Eclampsia. Edema, proteinuria and hypertensive disorders during pregnancy, childbirth and the postpartum period. Clinical recommendations. Ministry of Health of the Russian Federation; 2021. (In Russ.)
- Wang Y, Zhang Y, Wang H, et al. Aberrantly up-regulated miR-20a in pre-eclampsic placenta compromised the proliferative and invasive behaviors of trophoblast cells by targeting forkhead box protein A1. Int J Biol Sci. 2014;10(9):973–82. doi: 10.7150/ijbs.9088
- Luizon MR, Conceição IMCA, Viana-Mattioli S, et al. Circulating MicroRNAs in the Second Trimester from Pregnant Women Who Subsequently Developed Preeclampsia: Potential Candidates as Predictive Biomarkers and Pathway Analysis for Target Genes of miR-204-5p. Front. Physiol. 2021;12:678184. doi: 10.3389/fphys.2021.678184
- Peng P, Song H, Xie C, et al. miR-146a-5p-mediated suppression on trophoblast cell progression and epithelial-mesenchymal transition in preeclampsia. Biol Res. 2021;54(1):30. doi: 10.1186/s40659-021-00351-5
- Huang X, Wu L, Zhang G, et al. Elevated MicroRNA-181a-5p Contributes to Trophoblast Dysfunction and Preeclampsia. Reprod Sci. 2019;26(8):1121–1129. doi: 10.1177/1933719118808916
- Kim C, Ye Z, Weyand CM, Goronzy JJ. miR-181a-regulated pathways in T-cell differentiation and aging. Immun Ageing. 2021;18(1):28. doi: 10.1186/s12979-021-00240-1
- Nejad RMA, Saeidi K, Gharbi S, et al. Quantification of circulating miR-517c-3p and miR-210-3p levels in preeclampsia. Pregnancy Hypertens. 2019;16:75–78. doi: 10.1016/j.preghy.2019.03.004
- Munaut C, Tebache L, Blacher S, et al. Dysregulated circulating miRNAs in preeclampsia. Biomed Rep. 2016;5(6):686–692. doi: 10.3892/br.2016.779
- Jaszczuk I, Koczkodaj D, Kondracka A, et al. The role of miRNA-210 in pre-eclampsia development. Ann Med. 2022;54(1):1350–1356. doi: 10.1080/07853890.2022.2071459
- Anton L, DeVine A, Polyak E, et al. HIF-1α Stabilization Increases miR-210 Eliciting First Trimester Extravillous Trophoblast Mitochondrial Dysfunction. Front Physiol. 2019;10:699. doi: 10.3389/fphys.2019.00699
- Zhong Y, Zhu F, Ding Y. Differential microRNA expression profile in the plasma of preeclampsia and normal pregnancies. Exp Ther Med. 2019;18(1):826–832. doi: 10.3892/etm.2019.7637
- Liao G, Cheng D, Li J, Hu S. Clinical significance of microRNA-320a and insulin-like growth factor-1 receptor in early-onset preeclampsia patients. Eur J Obstet Gynecol Reprod Biol. 2021;263:164–170. doi: 10.1016/j.ejogrb.2021.06.032
- Akgör U, Ayaz L, Çayan F. Expression levels of maternal plasma microRNAs in preeclamptic pregnancies. J Obstet Gynaecol. 2021;41(6):910–914. doi: 10.1080/01443615.2020.1820465
- Ren Y, Xu Y, Wang Y, et al. Regulation of miR-375 and Sonic hedgehog on vascular endothelial growth factor in preeclampsia rats and its effect on trophoblast cells. Biosci Rep. Published online May 15, 2020. doi: 10.1042/BSR20200613
- Mayor-Lynn K, Toloubeydokhti T, Cruz AC, Chegini N. Expression Profile of MicroRNAs and mRNAs in Human Placentas from Pregnancies Complicated by Preeclampsia and Preterm Labor. Reproductive Sciences. 2011;18(1):46–56. doi: 10.1177/1933719110374115
- Nejad RMA, Saeidi K, Gharbi S, et al. Quantification of circulating miR-517c-3p and miR-210-3p levels in preeclampsia. Pregnancy Hypertens. 2019;16:75–78. doi: 10.1016/j.preghy.2019.03.004
- Hromadnikova I, Kotlabova K, Krofta L. Cardiovascular Disease-Associated MicroRNA Dysregulation during the First Trimester of Gestation in Women with Chronic Hypertension and Normotensive Women Subsequently Developing Gestational Hypertension or Preeclampsia with or without Fetal Growth Restriction. Biomedicines. 2022;10(2):256. doi: 10.3390/ biomedicines10020256
- Munaut C, Tebache L, Blacher S, et al. Dysregulated circulating miRNAs in preeclampsia. Biomed Rep. 2016;5(6):686–692. doi: 10.3892/br.2016.779
- Lip SV, Boekschoten MV, Hooiveld GJ, et al. Early-onset preeclampsia, plasma microRNAs, and endothelial cell function. Am J Obstet Gynecol. 2020;222(5):497.e1–497.e12. doi: 10.1016/j.ajog.2019.11.1286
- Zhong Y, Zhu F, Ding Y. Differential microRNA expression profile in the plasma of preeclampsia and normal pregnancies. Exp Ther Med. 2019;18(1):826-832. doi: 10.3892/etm.2019.7637
- Ali Z, Zargham U, Zaki S, et al. Elevated expression of miR-210-5p & miR-195-5p deregulates angiogenesis in preeclampsia. Baltica. 2010;33. Paper ID: 30dW0.
- Vlachos IS, Zagganas K, Paraskevopoulou MD, et al. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res. 2015;43(W1):W460–W466. doi: 10.1093/nar/gkv403
- Bao S, Zhou T, Yan C, et al. A blood-based miRNA signature for early non-invasive diagnosis of preeclampsia. BMC Med. 2022;20(1):303. doi: 10.1186/s12916-022-02495-x
- Vaiman D. Genes, epigenetics and miRNA regulation in the placenta. Placenta. 2017;52:127–133. doi: 10.1016/j.placenta.2016.12.026
- DaSilva-Arnold SC, Zamudio S, Al-Khan A, et al. Human trophoblast epithelial-mesenchymal transition in abnormally invasive placenta. Biol Reprod. 2018;99(2):409–421. doi: 10.1093/biolre/ioy042
- Jauniaux E, Watson A, Burton G. Evaluation of respiratory gases and acid-base gradients in human fetal fluids and uteroplacental tissue between 7 and 16 weeks’ gestation. Am J Obstet Gynecol. 2001;184(5):998–1003. doi: 10.1067/mob.2001.111935
- Ura B, Feriotto G, Monasta L, et al. Potential role of circulating microRNAs as early markers of preeclampsia. Taiwan J Obstet Gynecol. 2014;53(2):232–234. doi: 10.1016/j.tjog.2014.03.001
- Anton L, Olarerin-George AO, Hogenesch JB, Elovitz MA. Placental expression of miR-517a/b and miR-517c contributes to trophoblast dysfunction and preeclampsia. PLoS One. 2015;10(3):e0122707. doi: 10.1371/journal.pone.0122707
- Burton GJ, Yung H-W, Cindrova-Davies T, Charnock-Jones DS. Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta. 2009;30(Suppl. A):S43–S48. doi: 10.1016/j.placenta.2008.11.003
- Carbonell T, Gomes AV. MicroRNAs in the regulation of cellular redox status and its implications in myocardial ischemia-reperfusion injury. Redox Biol. 2020;36:101607. doi: 10.1016/j.redox.2020.101607
- Carrella S, Di Guida M, Brillante S, et al. miR-181a/b downregulation: a mutation-independent therapeutic approach for inherited retinal diseases. EMBO Mol Med. 2022;14(11):e15941. doi: 10.15252/emmm.202215941
- Hromadnikova I, Kotlabova K, Krofta L. First-Trimester Screening for Fetal Growth Restriction and Small-for-Gestational-Age Pregnancies without Preeclampsia Using Cardiovascular Disease-Associated MicroRNA Biomarkers. Biomedicines. 2022;10(3):718. doi: 10.3390/biomedicines10030718
- Shi L, Song Z, Li Y, et al. MiR-20a-5p alleviates kidney ischemia/reperfusion injury by targeting ACSL4-dependent ferroptosis. Am J Transplant. 2023;23(1):11–25. doi: 10.1016/j.ajt.2022.09.003
- Salomon C, Torres MJ, Kobayashi M, et al. A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration. PLoS One. 2014;9(6):e98667. doi: 10.1371/journal.pone.0098667
Supplementary files
