Epigenetic mechanisms of preeclampsia: Role of plasma microRNAs

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Despite the retentive relevance of preeclampsia (PE) among the main causes of maternal morbidity and mortality, its etiology remains unclear. Despite gaps in its pathophysiology, highly effective methods of prognosis, prevention, and treatment are still not devised yet. In recent years, the use of microRNA molecules that epigenetically control the expression of target genes at the post-transcriptional level received great interest as are they of key importance in the proliferation, differentiation, invasion, migration, and apoptosis of trophoblast cells and regulation of angiogenesis, immune response, and other processes during pregnancy

AIM: This study aimed to investigate the epigenetic mechanisms of PE development based on the evaluation of the expression of pathogenetically significant microRNAs in women’s blood plasma.

MATERIALS AND METHODS: The study included 62 female patients divided into the main study group (n=42 with PE) and the control group (n = 20 healthy women with uncomplicated pregnancy, childbirth, and post-natal period). All patients have undergone general clinical, laboratory, and instrumental examinations. The expression levels of 15 microRNAs in the blood plasma were evaluated using a quantitative real-time polymerase chain reaction. DIANA miRPath v. 3.0 was used to evaluate the effect of differentially expressed microRNAs on the functioning of signaling pathways. Statistical data analyses were performed using Statistica 6.0.

RESULTS: Multidirectional changes in the expression levels of 13 of 15 plasma microRNAs were found in the PE group compared with the control group; however, the expression levels of the following eight microRNAs decreased significantly: hsa-miR-146a-5p (p=0.011), hsa-miR-181a-5p (p=0.015), hsa-miR-210-3p (p=0.031), hsa-miR-517a-3p (p=0.004), hsa-miR-517c-3p (p=0.007), hsa-miR-574-3p (p=0.048), hsa-miR-574-5p (p=0.003), and hsa-miR-1304-5p (p=0.001). The expression levels of hsa-miR-20a-5p (FC=0.39; p=0.049) and hsa-miR-143-3p (FC=0.71, p=0.05) significantly decreased in pregnant women with PE and symptoms of fetal growth retardation (FGR) compared with the subgroup without FGR. No significant differences in the expression level of the analyzed microRNAs were found between the subgroups with moderate and severe PE and early and late PE. The functional evaluation of differentially expressed microRNAs among women with PE, considering the identification of their potential target genes, revealed the dysregulation of >40 signaling pathways and biological processes in which these molecules are involved.

CONCLUSION: PE progresses alongside significant epigenetic changes accompanied by changes in the microRNA expression profile, which are associated with cardiovascular and cerebrovascular diseases and placental disorders. The detected differentially expressed microRNAs may be potential diagnostic markers of PE.

About the authors

Natalya A. Nikitina

I.M. Sechenov First Moscow State Medical University

Email: natnikitina@list.ru
ORCID iD: 0000-0001-8659-9963

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Iraida S. Sidorova

I.M. Sechenov First Moscow State Medical University

Email: sidorovais@yandex.ru
ORCID iD: 0000-0003-2209-8662

Academician of the Russian Academy of Sciences, MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Maria P. Raygorodskaya

P. Hertsen Moscow Oncology Research Institute — Branch of the National Medical Research Radiological Centre

Email: maria.raygorodskaya@gmail.com
ORCID iD: 0000-0003-0527-7773

Cand. Sci. (Biology), Research Associate

Russian Federation, Moscow

Ekaterina A. Morozova

I.M. Sechenov First Moscow State Medical University

Author for correspondence.
Email: drstrelnikova@mail.ru
ORCID iD: 0000-0002-1670-9044

Graduate Student

Russian Federation, Moscow

Sergej A. Timofeev

I.M. Sechenov First Moscow State Medical University

Email: satimofeev30@gmail.com
ORCID iD: 0000-0001-7380-9255

Department Assistant

Russian Federation, Moscow

Mikhail B. Ageev

I.M. Sechenov First Moscow State Medical University

Email: mikhaageev@ua.ru
ORCID iD: 0000-0002-6603-804X

MD, Cand. Sci. (Medicine), Assistant Professor

Russian Federation, Moscow

Nigar I. Amiraslanova

I.M. Sechenov First Moscow State Medical University

Email: amiraslanova00@mail.ru
ORCID iD: 0009-0008-7446-3995

Resident

Russian Federation, Moscow

References

  1. Jung E, Romero R, Yeo L, et al. The etiology of preeclampsia. Am J Obstet Gynecol. 2022;226(2S):S844–S866. doi: 10.1016/j.ajog.2021.11.1356
  2. Khan KS, Wojdyla D, Say L, et al. WHO analysis of causes of maternal death: a systematic review. Lancet. 2006;367(9516):1066–1074. doi: 10.1016/S0140-6736(06)68397-9
  3. Steegers EA, von Dadelszen P, Duvekot JJ, Pijnenborg R. Pre-eclampsia. Lancet. 2010;376(9741):631–644. doi: 10.1016/S0140-6736(10)60279-6
  4. World Health Organization. WHO recommendations for prevention and treatment of pre-eclampsia and eclampsia. Geneva; 2011.
  5. Roberts JM, Rich-Edwards JW, McElrath TF, et al. Global Pregnancy Collaboration. Subtypes of Preeclampsia: Recognition and Determining Clinical Usefulness. Hypertension. 2021;77(5):1430–1441. doi: 10.1161/HYPERTENSIONAHA.120.14781
  6. Roberts JM, Hubel CA. The two stage model of preeclampsia: variations on the theme. Placenta. 2009;30(Suppl. A):S32–37. doi: 10.1016/j.placenta.2008.11.009
  7. Fitzgerald JS, Germeyer A, Huppertz B, et al. Governing the invasive trophoblast: current aspects on intra- and extracellular regulation. Am J Reprod Immunol. 2010;63(6):492–505. doi: 10.1111/j.1600-0897.2010.00824.x
  8. James JL, Saghian R, Perwick R, Clark AR. Trophoblast plugs: impact on utero-placental haemodynamics and spiral artery remodelling. Hum Reprod. 2018;33(8):1430–1441. doi: 10.1093/humrep/dey225
  9. Allerkamp HH, Clark AR, Lee TC, et al. Something old, something new: digital quantification of uterine vascular remodelling and trophoblast plugging in historical collections provides new insight into adaptation of the utero- placental circulation. Hum Reprod. 2021;36(3):571–86. doi: 10.1093/humrep/deaa303
  10. Staff AC, Fjeldstad HE, Fosheim IK, et al. Failure of physiological transformation and spiral artery atherosis: their roles in preeclampsia. Am J Obstet Gynecol. 2022;226(2S):S895–S906. doi: 10.1016/j.ajog.2020.09.026
  11. Sidorova IS. Solved and unsolved problems of preeclampsia in Russia (Editorial). Russ Bull Obstet. 2015;15(2):4–9. doi: 10.17116/rosakush20151524-9
  12. Phipps E, Prasanna D, Brima W, Jim B. Preeclampsia: Updates in Pathogenesis, Definitions, and Guidelines. Clin J Am Soc Nephrol. 2016;11(6):1102–1113. doi: 10.2215/CJN.12081115
  13. Roberts JM, Bell MJ. If we know so much about preeclampsia. why haven’t we cured the disease? J. Reprod. Immunol. 2013;99(1–2):1–9. doi: 10.1016/j.jri.2013.05.003
  14. Poirier C, Desgagné V, Guérin R, Bouchard L. MicroRNAs in Pregnancy and Gestational Diabetes Mellitus: Emerging Role in Maternal Metabolic Regulation. Curr Diab Rep. 2017;17(5):35. doi: 10.1007/s11892-017-0856-5
  15. Enquobahrie DA, Abetew DF, Sorensen TK, et al. Placental microRNA expression in pregnancies complicated by preeclampsia. Am J Obstet Gynecol. 2011;204(2):178.e12–178.e21. doi: 10.1016/j.ajog.2010.09.004
  16. Luo S, Cao N, Tang Y, Gu W. Identification of key microRNAs and genes in preeclampsia by bioinformatics analysis. PLoS One. 2017;12(6)e0178549. doi: 10.1371/journal.pone.0178549
  17. Wu L, Zhou H, Lin H, et al. Circulating microRNAs are elevated in plasma from severe preeclamptic pregnancies. Reproduction. 2012;143(3):389–397. doi: 10.1530/REP-11-0304
  18. Matsubara K, Matsubara Y, Uchikura Y, Sugiyama T. Pathophysiology of Preeclampsia: The Role of Exosomes. Int J Mol Sci. 2021;22(5):2572. doi: 10.3390/ijms22052572
  19. Lv Y, Lu C, Ji X, et al. Roles of microRNAs in preeclampsia. J Cell Physiol. 2019;234(2):1052–1061. doi: 10.1002/jcp.27291
  20. Khodzhaeva ZS, Shmakov RG, Savel’eva GM, et al. Preeclampsia. Eclampsia. Edema, proteinuria and hypertensive disorders during pregnancy, childbirth and the postpartum period. Clinical recommendations. Ministry of Health of the Russian Federation; 2021. (In Russ.)
  21. Wang Y, Zhang Y, Wang H, et al. Aberrantly up-regulated miR-20a in pre-eclampsic placenta compromised the proliferative and invasive behaviors of trophoblast cells by targeting forkhead box protein A1. Int J Biol Sci. 2014;10(9):973–82. doi: 10.7150/ijbs.9088
  22. Luizon MR, Conceição IMCA, Viana-Mattioli S, et al. Circulating MicroRNAs in the Second Trimester from Pregnant Women Who Subsequently Developed Preeclampsia: Potential Candidates as Predictive Biomarkers and Pathway Analysis for Target Genes of miR-204-5p. Front. Physiol. 2021;12:678184. doi: 10.3389/fphys.2021.678184
  23. Peng P, Song H, Xie C, et al. miR-146a-5p-mediated suppression on trophoblast cell progression and epithelial-mesenchymal transition in preeclampsia. Biol Res. 2021;54(1):30. doi: 10.1186/s40659-021-00351-5
  24. Huang X, Wu L, Zhang G, et al. Elevated MicroRNA-181a-5p Contributes to Trophoblast Dysfunction and Preeclampsia. Reprod Sci. 2019;26(8):1121–1129. doi: 10.1177/1933719118808916
  25. Kim C, Ye Z, Weyand CM, Goronzy JJ. miR-181a-regulated pathways in T-cell differentiation and aging. Immun Ageing. 2021;18(1):28. doi: 10.1186/s12979-021-00240-1
  26. Nejad RMA, Saeidi K, Gharbi S, et al. Quantification of circulating miR-517c-3p and miR-210-3p levels in preeclampsia. Pregnancy Hypertens. 2019;16:75–78. doi: 10.1016/j.preghy.2019.03.004
  27. Munaut C, Tebache L, Blacher S, et al. Dysregulated circulating miRNAs in preeclampsia. Biomed Rep. 2016;5(6):686–692. doi: 10.3892/br.2016.779
  28. Jaszczuk I, Koczkodaj D, Kondracka A, et al. The role of miRNA-210 in pre-eclampsia development. Ann Med. 2022;54(1):1350–1356. doi: 10.1080/07853890.2022.2071459
  29. Anton L, DeVine A, Polyak E, et al. HIF-1α Stabilization Increases miR-210 Eliciting First Trimester Extravillous Trophoblast Mitochondrial Dysfunction. Front Physiol. 2019;10:699. doi: 10.3389/fphys.2019.00699
  30. Zhong Y, Zhu F, Ding Y. Differential microRNA expression profile in the plasma of preeclampsia and normal pregnancies. Exp Ther Med. 2019;18(1):826–832. doi: 10.3892/etm.2019.7637
  31. Liao G, Cheng D, Li J, Hu S. Clinical significance of microRNA-320a and insulin-like growth factor-1 receptor in early-onset preeclampsia patients. Eur J Obstet Gynecol Reprod Biol. 2021;263:164–170. doi: 10.1016/j.ejogrb.2021.06.032
  32. Akgör U, Ayaz L, Çayan F. Expression levels of maternal plasma microRNAs in preeclamptic pregnancies. J Obstet Gynaecol. 2021;41(6):910–914. doi: 10.1080/01443615.2020.1820465
  33. Ren Y, Xu Y, Wang Y, et al. Regulation of miR-375 and Sonic hedgehog on vascular endothelial growth factor in preeclampsia rats and its effect on trophoblast cells. Biosci Rep. Published online May 15, 2020. doi: 10.1042/BSR20200613
  34. Mayor-Lynn K, Toloubeydokhti T, Cruz AC, Chegini N. Expression Profile of MicroRNAs and mRNAs in Human Placentas from Pregnancies Complicated by Preeclampsia and Preterm Labor. Reproductive Sciences. 2011;18(1):46–56. doi: 10.1177/1933719110374115
  35. Nejad RMA, Saeidi K, Gharbi S, et al. Quantification of circulating miR-517c-3p and miR-210-3p levels in preeclampsia. Pregnancy Hypertens. 2019;16:75–78. doi: 10.1016/j.preghy.2019.03.004
  36. Hromadnikova I, Kotlabova K, Krofta L. Cardiovascular Disease-Associated MicroRNA Dysregulation during the First Trimester of Gestation in Women with Chronic Hypertension and Normotensive Women Subsequently Developing Gestational Hypertension or Preeclampsia with or without Fetal Growth Restriction. Biomedicines. 2022;10(2):256. doi: 10.3390/ biomedicines10020256
  37. Munaut C, Tebache L, Blacher S, et al. Dysregulated circulating miRNAs in preeclampsia. Biomed Rep. 2016;5(6):686–692. doi: 10.3892/br.2016.779
  38. Lip SV, Boekschoten MV, Hooiveld GJ, et al. Early-onset preeclampsia, plasma microRNAs, and endothelial cell function. Am J Obstet Gynecol. 2020;222(5):497.e1–497.e12. doi: 10.1016/j.ajog.2019.11.1286
  39. Zhong Y, Zhu F, Ding Y. Differential microRNA expression profile in the plasma of preeclampsia and normal pregnancies. Exp Ther Med. 2019;18(1):826-832. doi: 10.3892/etm.2019.7637
  40. Ali Z, Zargham U, Zaki S, et al. Elevated expression of miR-210-5p & miR-195-5p deregulates angiogenesis in preeclampsia. Baltica. 2010;33. Paper ID: 30dW0.
  41. Vlachos IS, Zagganas K, Paraskevopoulou MD, et al. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res. 2015;43(W1):W460–W466. doi: 10.1093/nar/gkv403
  42. Bao S, Zhou T, Yan C, et al. A blood-based miRNA signature for early non-invasive diagnosis of preeclampsia. BMC Med. 2022;20(1):303. doi: 10.1186/s12916-022-02495-x
  43. Vaiman D. Genes, epigenetics and miRNA regulation in the placenta. Placenta. 2017;52:127–133. doi: 10.1016/j.placenta.2016.12.026
  44. DaSilva-Arnold SC, Zamudio S, Al-Khan A, et al. Human trophoblast epithelial-mesenchymal transition in abnormally invasive placenta. Biol Reprod. 2018;99(2):409–421. doi: 10.1093/biolre/ioy042
  45. Jauniaux E, Watson A, Burton G. Evaluation of respiratory gases and acid-base gradients in human fetal fluids and uteroplacental tissue between 7 and 16 weeks’ gestation. Am J Obstet Gynecol. 2001;184(5):998–1003. doi: 10.1067/mob.2001.111935
  46. Ura B, Feriotto G, Monasta L, et al. Potential role of circulating microRNAs as early markers of preeclampsia. Taiwan J Obstet Gynecol. 2014;53(2):232–234. doi: 10.1016/j.tjog.2014.03.001
  47. Anton L, Olarerin-George AO, Hogenesch JB, Elovitz MA. Placental expression of miR-517a/b and miR-517c contributes to trophoblast dysfunction and preeclampsia. PLoS One. 2015;10(3):e0122707. doi: 10.1371/journal.pone.0122707
  48. Burton GJ, Yung H-W, Cindrova-Davies T, Charnock-Jones DS. Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta. 2009;30(Suppl. A):S43–S48. doi: 10.1016/j.placenta.2008.11.003
  49. Carbonell T, Gomes AV. MicroRNAs in the regulation of cellular redox status and its implications in myocardial ischemia-reperfusion injury. Redox Biol. 2020;36:101607. doi: 10.1016/j.redox.2020.101607
  50. Carrella S, Di Guida M, Brillante S, et al. miR-181a/b downregulation: a mutation-independent therapeutic approach for inherited retinal diseases. EMBO Mol Med. 2022;14(11):e15941. doi: 10.15252/emmm.202215941
  51. Hromadnikova I, Kotlabova K, Krofta L. First-Trimester Screening for Fetal Growth Restriction and Small-for-Gestational-Age Pregnancies without Preeclampsia Using Cardiovascular Disease-Associated MicroRNA Biomarkers. Biomedicines. 2022;10(3):718. doi: 10.3390/biomedicines10030718
  52. Shi L, Song Z, Li Y, et al. MiR-20a-5p alleviates kidney ischemia/reperfusion injury by targeting ACSL4-dependent ferroptosis. Am J Transplant. 2023;23(1):11–25. doi: 10.1016/j.ajt.2022.09.003
  53. Salomon C, Torres MJ, Kobayashi M, et al. A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration. PLoS One. 2014;9(6):e98667. doi: 10.1371/journal.pone.0098667

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».