子痫前期的表观遗传学机制:血浆microRNA的作用
- 作者: Nikitina N.A.1, Sidorova I.S.1, Raygorodskaya M.P.2, Morozova E.A.1, Timofeev S.A.1, Ageev M.B.1, Amiraslanova N.I.1
-
隶属关系:
- I.M. Sechenov First Moscow State Medical University
- P. Hertsen Moscow Oncology Research Institute — Branch of the National Medical Research Radiological Centre
- 期: 卷 11, 编号 2 (2024)
- 页面: 179-192
- 栏目: Original study articles
- URL: https://journals.rcsi.science/2313-8726/article/view/260552
- DOI: https://doi.org/10.17816/aog623622
- ID: 260552
如何引用文章
详细
论证。尽管子痫前期在孕产妇发病率和死亡率的主要原因中一直占有重要地位,但这种妊娠并发症的病因仍不清楚,病理生理学方面也存在许多空白。因此,目前仍未开发出高效的预测、预防和治疗方法。近年来,人们对利用microRNA分子的前景产生了浓厚的兴趣,这些分子在转录后水平对靶基因的表达进行表观遗传学控制,在妊娠期间滋养层细胞的增殖、分化、侵袭、迁移、凋亡、血管生成调控、免疫反应和其他过程中起着关键作用。
目的。通过评估妇女血浆中具有重要病理意义的 microRNA 表达,研究子痫前期发生的表观遗传学机制。
材料与方法。研究包括62名患者,他们被分为主要组(42名子痫前期孕妇)和对照组(20名无并发症妊娠、分娩和产后健康妇女)。所有患者均接受了一般临床、实验室和仪器检查。通过实时定量聚合酶链反应评估了血浆中15种microRNA的表达水平。使用DIANA miRPath v.3.0软件评估不同表达的microRNA对信号通路功能的影响。使用Statistica 6.0软件许可包进行统计数据处理。
结果。与对照组相比,患有子痫前期的妇女血浆中15种microRNA中有13种的表达发生了多向变化。然而,有8种microRNA的表达水平出现了统计学意义上的显著下降: hsa-miR-146a-5p (p=0.011), hsa-miR-181a-5p (p=0.015), hsa-miR-210-3p (p=0.031), hsa-miR-517a-3p (p=0.004), hsa-miR-517c-3p (p=0.007), hsa-miR-574-3p (p=0.048), hsa-miR-574-5p (p=0.003), hsa-miR-1304-5p (p <0.001). 子痫前期有胎儿生长迟缓症状的孕妇亚组与无胎儿生长迟缓亚组相比,hsa-miR-20a-5p (FC=0.39; p=0.049), hsa-miR-143-3p (FC=0.71; p=0.05)的表达水平显著下降。在中度和重度子痫前期、早期和晚期子痫前期亚组之间,所分析的microRNA表达水平没有明显差异。对子痫前期妇女体内差异表达的microRNA进行功能评估,并对其潜在靶基因进行鉴定,结果表明这些分子参与的40多种信号通路和生物过程存在失调。
结论。子痫前期的发生伴随着显著的表观遗传学变化,其中与心脑血管疾病和胎盘疾病相关的microRNA的表达谱发生了改变。已检测到的差异表达的microRNA可能是子痫前期的潜在诊断标志物。
作者简介
Natalya A. Nikitina
I.M. Sechenov First Moscow State Medical University
Email: natnikitina@list.ru
ORCID iD: 0000-0001-8659-9963
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, MoscowIraida S. Sidorova
I.M. Sechenov First Moscow State Medical University
Email: sidorovais@yandex.ru
ORCID iD: 0000-0003-2209-8662
Academician of the Russian Academy of Sciences, MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, MoscowMaria P. Raygorodskaya
P. Hertsen Moscow Oncology Research Institute — Branch of the National Medical Research Radiological Centre
Email: maria.raygorodskaya@gmail.com
ORCID iD: 0000-0003-0527-7773
Cand. Sci. (Biology), Research Associate
俄罗斯联邦, MoscowEkaterina A. Morozova
I.M. Sechenov First Moscow State Medical University
编辑信件的主要联系方式.
Email: drstrelnikova@mail.ru
ORCID iD: 0000-0002-1670-9044
Graduate Student
俄罗斯联邦, MoscowSergej A. Timofeev
I.M. Sechenov First Moscow State Medical University
Email: satimofeev30@gmail.com
ORCID iD: 0000-0001-7380-9255
Department Assistant
俄罗斯联邦, MoscowMikhail B. Ageev
I.M. Sechenov First Moscow State Medical University
Email: mikhaageev@ua.ru
ORCID iD: 0000-0002-6603-804X
MD, Cand. Sci. (Medicine), Assistant Professor
俄罗斯联邦, MoscowNigar I. Amiraslanova
I.M. Sechenov First Moscow State Medical University
Email: amiraslanova00@mail.ru
ORCID iD: 0009-0008-7446-3995
Resident
俄罗斯联邦, Moscow参考
- Jung E, Romero R, Yeo L, et al. The etiology of preeclampsia. Am J Obstet Gynecol. 2022;226(2S):S844–S866. doi: 10.1016/j.ajog.2021.11.1356
- Khan KS, Wojdyla D, Say L, et al. WHO analysis of causes of maternal death: a systematic review. Lancet. 2006;367(9516):1066–1074. doi: 10.1016/S0140-6736(06)68397-9
- Steegers EA, von Dadelszen P, Duvekot JJ, Pijnenborg R. Pre-eclampsia. Lancet. 2010;376(9741):631–644. doi: 10.1016/S0140-6736(10)60279-6
- World Health Organization. WHO recommendations for prevention and treatment of pre-eclampsia and eclampsia. Geneva; 2011.
- Roberts JM, Rich-Edwards JW, McElrath TF, et al. Global Pregnancy Collaboration. Subtypes of Preeclampsia: Recognition and Determining Clinical Usefulness. Hypertension. 2021;77(5):1430–1441. doi: 10.1161/HYPERTENSIONAHA.120.14781
- Roberts JM, Hubel CA. The two stage model of preeclampsia: variations on the theme. Placenta. 2009;30(Suppl. A):S32–37. doi: 10.1016/j.placenta.2008.11.009
- Fitzgerald JS, Germeyer A, Huppertz B, et al. Governing the invasive trophoblast: current aspects on intra- and extracellular regulation. Am J Reprod Immunol. 2010;63(6):492–505. doi: 10.1111/j.1600-0897.2010.00824.x
- James JL, Saghian R, Perwick R, Clark AR. Trophoblast plugs: impact on utero-placental haemodynamics and spiral artery remodelling. Hum Reprod. 2018;33(8):1430–1441. doi: 10.1093/humrep/dey225
- Allerkamp HH, Clark AR, Lee TC, et al. Something old, something new: digital quantification of uterine vascular remodelling and trophoblast plugging in historical collections provides new insight into adaptation of the utero- placental circulation. Hum Reprod. 2021;36(3):571–86. doi: 10.1093/humrep/deaa303
- Staff AC, Fjeldstad HE, Fosheim IK, et al. Failure of physiological transformation and spiral artery atherosis: their roles in preeclampsia. Am J Obstet Gynecol. 2022;226(2S):S895–S906. doi: 10.1016/j.ajog.2020.09.026
- Sidorova IS. Solved and unsolved problems of preeclampsia in Russia (Editorial). Russ Bull Obstet. 2015;15(2):4–9. doi: 10.17116/rosakush20151524-9
- Phipps E, Prasanna D, Brima W, Jim B. Preeclampsia: Updates in Pathogenesis, Definitions, and Guidelines. Clin J Am Soc Nephrol. 2016;11(6):1102–1113. doi: 10.2215/CJN.12081115
- Roberts JM, Bell MJ. If we know so much about preeclampsia. why haven’t we cured the disease? J. Reprod. Immunol. 2013;99(1–2):1–9. doi: 10.1016/j.jri.2013.05.003
- Poirier C, Desgagné V, Guérin R, Bouchard L. MicroRNAs in Pregnancy and Gestational Diabetes Mellitus: Emerging Role in Maternal Metabolic Regulation. Curr Diab Rep. 2017;17(5):35. doi: 10.1007/s11892-017-0856-5
- Enquobahrie DA, Abetew DF, Sorensen TK, et al. Placental microRNA expression in pregnancies complicated by preeclampsia. Am J Obstet Gynecol. 2011;204(2):178.e12–178.e21. doi: 10.1016/j.ajog.2010.09.004
- Luo S, Cao N, Tang Y, Gu W. Identification of key microRNAs and genes in preeclampsia by bioinformatics analysis. PLoS One. 2017;12(6)e0178549. doi: 10.1371/journal.pone.0178549
- Wu L, Zhou H, Lin H, et al. Circulating microRNAs are elevated in plasma from severe preeclamptic pregnancies. Reproduction. 2012;143(3):389–397. doi: 10.1530/REP-11-0304
- Matsubara K, Matsubara Y, Uchikura Y, Sugiyama T. Pathophysiology of Preeclampsia: The Role of Exosomes. Int J Mol Sci. 2021;22(5):2572. doi: 10.3390/ijms22052572
- Lv Y, Lu C, Ji X, et al. Roles of microRNAs in preeclampsia. J Cell Physiol. 2019;234(2):1052–1061. doi: 10.1002/jcp.27291
- Khodzhaeva ZS, Shmakov RG, Savel’eva GM, et al. Preeclampsia. Eclampsia. Edema, proteinuria and hypertensive disorders during pregnancy, childbirth and the postpartum period. Clinical recommendations. Ministry of Health of the Russian Federation; 2021. (In Russ.)
- Wang Y, Zhang Y, Wang H, et al. Aberrantly up-regulated miR-20a in pre-eclampsic placenta compromised the proliferative and invasive behaviors of trophoblast cells by targeting forkhead box protein A1. Int J Biol Sci. 2014;10(9):973–82. doi: 10.7150/ijbs.9088
- Luizon MR, Conceição IMCA, Viana-Mattioli S, et al. Circulating MicroRNAs in the Second Trimester from Pregnant Women Who Subsequently Developed Preeclampsia: Potential Candidates as Predictive Biomarkers and Pathway Analysis for Target Genes of miR-204-5p. Front. Physiol. 2021;12:678184. doi: 10.3389/fphys.2021.678184
- Peng P, Song H, Xie C, et al. miR-146a-5p-mediated suppression on trophoblast cell progression and epithelial-mesenchymal transition in preeclampsia. Biol Res. 2021;54(1):30. doi: 10.1186/s40659-021-00351-5
- Huang X, Wu L, Zhang G, et al. Elevated MicroRNA-181a-5p Contributes to Trophoblast Dysfunction and Preeclampsia. Reprod Sci. 2019;26(8):1121–1129. doi: 10.1177/1933719118808916
- Kim C, Ye Z, Weyand CM, Goronzy JJ. miR-181a-regulated pathways in T-cell differentiation and aging. Immun Ageing. 2021;18(1):28. doi: 10.1186/s12979-021-00240-1
- Nejad RMA, Saeidi K, Gharbi S, et al. Quantification of circulating miR-517c-3p and miR-210-3p levels in preeclampsia. Pregnancy Hypertens. 2019;16:75–78. doi: 10.1016/j.preghy.2019.03.004
- Munaut C, Tebache L, Blacher S, et al. Dysregulated circulating miRNAs in preeclampsia. Biomed Rep. 2016;5(6):686–692. doi: 10.3892/br.2016.779
- Jaszczuk I, Koczkodaj D, Kondracka A, et al. The role of miRNA-210 in pre-eclampsia development. Ann Med. 2022;54(1):1350–1356. doi: 10.1080/07853890.2022.2071459
- Anton L, DeVine A, Polyak E, et al. HIF-1α Stabilization Increases miR-210 Eliciting First Trimester Extravillous Trophoblast Mitochondrial Dysfunction. Front Physiol. 2019;10:699. doi: 10.3389/fphys.2019.00699
- Zhong Y, Zhu F, Ding Y. Differential microRNA expression profile in the plasma of preeclampsia and normal pregnancies. Exp Ther Med. 2019;18(1):826–832. doi: 10.3892/etm.2019.7637
- Liao G, Cheng D, Li J, Hu S. Clinical significance of microRNA-320a and insulin-like growth factor-1 receptor in early-onset preeclampsia patients. Eur J Obstet Gynecol Reprod Biol. 2021;263:164–170. doi: 10.1016/j.ejogrb.2021.06.032
- Akgör U, Ayaz L, Çayan F. Expression levels of maternal plasma microRNAs in preeclamptic pregnancies. J Obstet Gynaecol. 2021;41(6):910–914. doi: 10.1080/01443615.2020.1820465
- Ren Y, Xu Y, Wang Y, et al. Regulation of miR-375 and Sonic hedgehog on vascular endothelial growth factor in preeclampsia rats and its effect on trophoblast cells. Biosci Rep. Published online May 15, 2020. doi: 10.1042/BSR20200613
- Mayor-Lynn K, Toloubeydokhti T, Cruz AC, Chegini N. Expression Profile of MicroRNAs and mRNAs in Human Placentas from Pregnancies Complicated by Preeclampsia and Preterm Labor. Reproductive Sciences. 2011;18(1):46–56. doi: 10.1177/1933719110374115
- Nejad RMA, Saeidi K, Gharbi S, et al. Quantification of circulating miR-517c-3p and miR-210-3p levels in preeclampsia. Pregnancy Hypertens. 2019;16:75–78. doi: 10.1016/j.preghy.2019.03.004
- Hromadnikova I, Kotlabova K, Krofta L. Cardiovascular Disease-Associated MicroRNA Dysregulation during the First Trimester of Gestation in Women with Chronic Hypertension and Normotensive Women Subsequently Developing Gestational Hypertension or Preeclampsia with or without Fetal Growth Restriction. Biomedicines. 2022;10(2):256. doi: 10.3390/ biomedicines10020256
- Munaut C, Tebache L, Blacher S, et al. Dysregulated circulating miRNAs in preeclampsia. Biomed Rep. 2016;5(6):686–692. doi: 10.3892/br.2016.779
- Lip SV, Boekschoten MV, Hooiveld GJ, et al. Early-onset preeclampsia, plasma microRNAs, and endothelial cell function. Am J Obstet Gynecol. 2020;222(5):497.e1–497.e12. doi: 10.1016/j.ajog.2019.11.1286
- Zhong Y, Zhu F, Ding Y. Differential microRNA expression profile in the plasma of preeclampsia and normal pregnancies. Exp Ther Med. 2019;18(1):826-832. doi: 10.3892/etm.2019.7637
- Ali Z, Zargham U, Zaki S, et al. Elevated expression of miR-210-5p & miR-195-5p deregulates angiogenesis in preeclampsia. Baltica. 2010;33. Paper ID: 30dW0.
- Vlachos IS, Zagganas K, Paraskevopoulou MD, et al. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res. 2015;43(W1):W460–W466. doi: 10.1093/nar/gkv403
- Bao S, Zhou T, Yan C, et al. A blood-based miRNA signature for early non-invasive diagnosis of preeclampsia. BMC Med. 2022;20(1):303. doi: 10.1186/s12916-022-02495-x
- Vaiman D. Genes, epigenetics and miRNA regulation in the placenta. Placenta. 2017;52:127–133. doi: 10.1016/j.placenta.2016.12.026
- DaSilva-Arnold SC, Zamudio S, Al-Khan A, et al. Human trophoblast epithelial-mesenchymal transition in abnormally invasive placenta. Biol Reprod. 2018;99(2):409–421. doi: 10.1093/biolre/ioy042
- Jauniaux E, Watson A, Burton G. Evaluation of respiratory gases and acid-base gradients in human fetal fluids and uteroplacental tissue between 7 and 16 weeks’ gestation. Am J Obstet Gynecol. 2001;184(5):998–1003. doi: 10.1067/mob.2001.111935
- Ura B, Feriotto G, Monasta L, et al. Potential role of circulating microRNAs as early markers of preeclampsia. Taiwan J Obstet Gynecol. 2014;53(2):232–234. doi: 10.1016/j.tjog.2014.03.001
- Anton L, Olarerin-George AO, Hogenesch JB, Elovitz MA. Placental expression of miR-517a/b and miR-517c contributes to trophoblast dysfunction and preeclampsia. PLoS One. 2015;10(3):e0122707. doi: 10.1371/journal.pone.0122707
- Burton GJ, Yung H-W, Cindrova-Davies T, Charnock-Jones DS. Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta. 2009;30(Suppl. A):S43–S48. doi: 10.1016/j.placenta.2008.11.003
- Carbonell T, Gomes AV. MicroRNAs in the regulation of cellular redox status and its implications in myocardial ischemia-reperfusion injury. Redox Biol. 2020;36:101607. doi: 10.1016/j.redox.2020.101607
- Carrella S, Di Guida M, Brillante S, et al. miR-181a/b downregulation: a mutation-independent therapeutic approach for inherited retinal diseases. EMBO Mol Med. 2022;14(11):e15941. doi: 10.15252/emmm.202215941
- Hromadnikova I, Kotlabova K, Krofta L. First-Trimester Screening for Fetal Growth Restriction and Small-for-Gestational-Age Pregnancies without Preeclampsia Using Cardiovascular Disease-Associated MicroRNA Biomarkers. Biomedicines. 2022;10(3):718. doi: 10.3390/biomedicines10030718
- Shi L, Song Z, Li Y, et al. MiR-20a-5p alleviates kidney ischemia/reperfusion injury by targeting ACSL4-dependent ferroptosis. Am J Transplant. 2023;23(1):11–25. doi: 10.1016/j.ajt.2022.09.003
- Salomon C, Torres MJ, Kobayashi M, et al. A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration. PLoS One. 2014;9(6):e98667. doi: 10.1371/journal.pone.0098667
补充文件
