Personalized 3D printed obstetric pessaries
- Authors: Ignatko I.V.1, Telyshev D.V.1, Timashov P.S.1, Pesegova S.V.1, Churganova A.A.1, Gafarova E.R.1, Rasskazova T.V.2, Askerov E.D.1, Dedova E.N.1
-
Affiliations:
- Sechenov First Moscow State Medical University (Sechenov University)
- S.S. Yudin City Clinical Hospital
- Issue: Vol 12, No 4 (2025)
- Pages: 434-442
- Section: Reviews
- URL: https://journals.rcsi.science/2313-8726/article/view/376622
- DOI: https://doi.org/10.17816/aog692798
- EDN: https://elibrary.ru/IXDGDF
- ID: 376622
Cite item
Abstract
Since its emergence in the 1980s, three-dimensional (3D) printing has become a representative manufacturing assist technology. It was first developed for rapid prototyping and is widely used in a variety of fields. Since the early 2000s, 3D bioprinting using biological materials such as cells and biomolecules has been successfully applied in tissue engineering to directly create living structures. Over the past several decades, advances in three-dimensional (3D) printing technologies and the development of specialized biomaterials have facilitated the precise fabrication of biological components and complex 3D shapes.
In obstetrics and gynecology, pessaries are increasingly used for stress urinary incontinence, pelvic organ prolapse, and cervical insufficiency. Commercially available pessaries come in a variety of sizes, following a “one size fits all” approach that fails to take into account the unique anatomical characteristics of each woman. The effectiveness of these pessaries is limited by poor fit and the lack of easy adjustment.
The aim of this study was to analyze literature on the feasibility of individualized pessary selection for stress urinary incontinence, рelvic organ prolapse and cervical insufficiency using 3D printing. We analyzed Russian and international publications in the PubMed, ScienceDirect, Elseiver, e-library databases, covering searches from 2015 to 2025.
About the authors
Irina V. Ignatko
Sechenov First Moscow State Medical University (Sechenov University)
Author for correspondence.
Email: ignatko_i_v@staff.sechenov.ru
ORCID iD: 0000-0002-9945-3848
SPIN-code: 8073-1817
MD, Dr. Sci. (Medicine), Professor, Corresponding Member of the Russian Academy of Sciences
Russian Federation, MoscowDmitry V. Telyshev
Sechenov First Moscow State Medical University (Sechenov University)
Email: telyshev_d_v@staff.sechenov.ru
ORCID iD: 0000-0002-4221-9882
SPIN-code: 9711-2620
MD, Dr. Sci. (Medicine), Professor
Russian Federation, MoscowPetеr S. Timashov
Sechenov First Moscow State Medical University (Sechenov University)
Email: timashev_p_s@staff.sechenov.ru
ORCID iD: 0000-0001-7773-2435
SPIN-code: 4836-2560
Dr. Sci. (Chemistry)
Russian Federation, MoscowSvetlana V. Pesegova
Sechenov First Moscow State Medical University (Sechenov University)
Email: pesegova_s_v@staff.sechenov.ru
ORCID iD: 0000-0002-1339-5422
SPIN-code: 8891-9490
MD, Cand. Sci. (Medicine)
Russian Federation, MoscowAnastasia A. Churganova
Sechenov First Moscow State Medical University (Sechenov University)
Email: churganova_a_a@staff.sechenov.ru
ORCID iD: 0000-0001-9398-9900
SPIN-code: 3872-7167
MD, Cand. Sci. (Medicine), Assistant Professor
Russian Federation, MoscowElvira R. Gafarova
Sechenov First Moscow State Medical University (Sechenov University)
Email: gafarova_e_r@staff.sechenov.ru
ORCID iD: 0000-0002-3215-2389
SPIN-code: 8846-5211
Russian Federation, Moscow
Tatiana V. Rasskazova
S.S. Yudin City Clinical Hospital
Email: tat.rasska3ova@yandex.ru
ORCID iD: 0009-0000-7681-9707
SPIN-code: 8709-6093
Russian Federation, Moscow
Emil D. Askerov
Sechenov First Moscow State Medical University (Sechenov University)
Email: askerov_e_j@staff.sechenov.ru
ORCID iD: 0000-0003-1634-5006
SPIN-code: 2811-3032
MD, Cand. Sci. (Medicine)
Russian Federation, MoscowElizaveta N. Dedova
Sechenov First Moscow State Medical University (Sechenov University)
Email: 08liza2004@rambler.ru
ORCID iD: 0009-0009-0687-2962
Russian Federation, Moscow
References
- World Health Organization (2021). Preterm birth. Available from: https://www.who.int/news-room/fact-sheets/detail/preterm-birth
- Sarda SP, Sarri G, Siffel C. Global prevalence of long-term neurodevelopmental impairment following extremely preterm birth: a systematic literature review. J Int Med Res. 2021;49(7):3000605211028026. doi: 10.1177/03000605211028026
- Skorobogatova OV, Belousova VS, Ignatko IV, et al. Matrix metalloproteinase-9 as a potential marker of preterm birth. Akusherstvo i Ginekologiya. 2024;(7):74–80. doi: 10.18565/aig.2024.66 EDN: PVGIEK
- Perin J, Mulick A, Yeung D, et al. Global, regional, and national causes of under-5 mortality in 2000-19: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet Child Adolesc Health. 2022;6(2):106–115. doi: 10.1016/S2352-4642(21)00311-4
- Ohuma EO, Moller AB, Bradley E, et al. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: a systematic analysis. Lancet. 2023;402(10409):1261–1271. doi: 10.1016/S0140-6736(23)00878-4
- Borschova AA, Pertceva GM, Alekseeva NA. Isthmic-cervical insufficiency in the structure of the reasons for mortaring of pregnancy. Medical Herald of the South of Russia. 2020;11(1):34–40. doi: 10.21886/2219-8075-2020-11-1-34-40 EDN: ZMLFTC
- Pesegova SV, Timokhina EV, Strizhakov AN, et al. Prediction of pregnancy outcomes in patients with cervical insufficiency undergoing cervical cerclage. Akusherstvo i Ginekologiya. 2023;(10):119–125. EDN: YPSDXA
- Ushakova SV, Zarochentseva NV, Popov AA, et al. Current procedures to correct isthmicocervical insufficiency. Russian Bulletin of Obstetrician-Gynecologist. 2015;15(5):117–123. EDN: VHUJHP
- Jin Z, Chen L, Qiao D, et al. Cervical pessary for preventing preterm birth: a meta-analysis. J Matern Fetal Neonatal Med. 2019;32(7):1148–1154. doi: 10.1080/14767058.2017.1401998
- Bespalova ON, Sargsyan GS. Pessaries in clinical practice. Ournal of Obstetrics and Womans Diseases. 2015;64(2):97–107. doi: 10.17816/JOWD64297-107 EDN: TTYWIH
- Oh KJ, Romero R, Park JY, et al. Evidence that antibiotic administration is effective in the treatment of a subset of patients with intra-amniotic infection/inflammation presenting with cervical insufficiency. Am J Obstet Gynecol. 2019;221(2):140.e1–140.e18. doi: 10.1016/j.ajog.2019.03.017
- Hoffman MK, Clifton RG, Biggio JR, et al. Cervical pessary for prevention of preterm birth in individuals with a short cervix: the TOPS randomized clinical trial. JAMA. 2023;330(4):340–348. doi: 10.1001/jama.2023.10812
- Hong CX, Zhang S, Eltahawi A, et al. Patient-specific pessaries for pelvic organ prolapse using three-dimensional printing: a pilot study. Urogynecology (Phila). 2023;29(9):732–739. doi: 10.1097/SPV.0000000000001346
- Gross BC, Erkal JL, Lockwood SY, et al. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem. 2014;86(7):3240–3253. doi: 10.1021/ac403397r
- Manzini C, Morsinkhof LM, van der Vaart CH, et al. Parameters associated with unsuccessful pessary fitting for pelvic organ prolapse up to three months follow-up: a systematic review and meta-analysis. Int Urogynecol J. 2022;33:1719–63. doi: 10.1007/s00192-021-05015-2
- Mussawar M, Khademioore S, Chandra A, et al. Examining pessary use and satisfaction in managing pelvic organ prolapse: results from a cross-sectional multicentre patient survey. BMC Urol. 2024;24(1):278. doi: 10.1186/s12894-024-01614-5
- Strohbehn K, Wadensweiler PM, Richter HE, et al. Effectiveness and safety of a novel, collapsible pessary for management of pelvic organ prolapse. Am J Obstet Gynecol. 2024;231(2):271.e1–271.e10. doi: 10.1016/j.ajog.2024.05.009
- van Zijl MD, Koullali B, Naaktgeboren CA, et al. Pessary or progesterone to prevent preterm delivery in women with short cervical length: the Quadruple P randomised controlled trial. BMC Pregnancy Childbirth. 2017;17(1):284. doi: 10.1186/s12884-017-1454-x
- Hong CX, Cioban M, Yasuda H, et al. Mechanical characterization of ring pessary folding. J Med Biol Eng. 2021;41:343–349. doi: 10.1007/s40846-021-00618-y
- Bugge C, Adams EJ, Gopinath D, et al. Pessaries (mechanical devices) for managing pelvic organ prolapse in women. Cochrane Database Syst Rev. 2020;11(11):CD004010. doi: 10.1002/14651858.CD004010.pub4
- Spoerk M, Arbeiter F, Koutsamanis I, et al. Corrigendum to “Personalised urethra pessaries prepared by material extrusion-based additive manufacturing” [Int. J. Pharm. 608 (2021) 121112]. Int J Pharm. 2023;631:122548. doi: 10.1016/j.ijpharm.2022.122548
- Tan XP, Tan YJ, Chow CSL, et al. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Mater Sci Eng C Mater Biol Appl. 2017;76:1328–1343. doi: 10.1016/j.msec.2017.02.094
- Mota C, Puppi D, Chiellini F, Chiellini E. Additive manufacturing techniques for the production of tissue engineering constructs. J Tissue Eng Regen Med. 2015;9(3):174–190. doi: 10.1002/term
- Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773–785. doi: 10.1038/nbt.2958
- ISO 10993-1:2018. Biological evaluation of medical devices. Part 1: Evaluation and testing within a risk management process. Available from: https://www.iso.org/standard/68936.html
- Morrison RJ, Kashlan KN, Flanangan CL, et al. Regulatory considerations in the design and manufacturing of implantable 3D-printed medical devices. Clin Transl Sci. 2015;8(5):594–600. doi: 10.1111/cts.12315
- Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br Dent J. 2015;219(11):521–529. doi: 10.1038/sj.bdj.2015.914
- Witowski J, Sitkowski M, Zuzak T, et al. From ideas to long-term studies: 3D printing clinical trials review. Int J Comput Assist Radiol Surg. 2018;13(9):1473–1478. doi: 10.1007/s11548-018-1793-8
- Giannopoulos AA, Mitsouras D, Yoo SJ, et al. Applications of 3D printing in cardiovascular diseases. Nat Rev Cardiol. 2016;13(12):701–718. doi: 10.1038/nrcardio.2016.170
- Heydenrych A, van der Walt JG, van den Heever HJ. Auricular prosthesis positioning using virtual planning in combination with additive manufacturing. J Stomatol Oral Maxillofac Surg. 2023;124(1):101258. doi: 10.1016/j.jormas.2022.08.001
- Martelli N, Serrano C, van den Brink H, et al. Advantages and disadvantages of 3-dimensional printing in surgery: A systematic review. Surgery. 2016;159(6):1485–1500. doi: 10.1016/j.surg.2015.12.017
- Jamróz W, Szafraniec J, Kurek M, Jachowicz R. 3D printing in pharmaceutical and medical applications — recent achievements and challenges. Pharm Res. 2018;35(9):176. doi: 10.1007/s11095-018-2454-x
- Ganguli A, Pagan-Diaz GJ, Grant L, et al. 3D printing for preoperative planning and surgical training: a review. Biomed Microdevices. 2018;20(3):65. doi: 10.1007/s10544-018-0301-9
- Barsky M, Kelley R, Bhora FY, Hardart A. Customized pessary fabrication using three-dimensional printing technology. Obstet Gynecol. 2018;131(3):493–497. doi: 10.1097/AOG.0000000000002461
- Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9:4. doi: 10.1186/s13036-015-0001-4
- Sansone S, Sze C, Eidelberg A, et al. Role of pessaries in the treatment of pelvic organ prolapse: a systematic review and meta-analysis. Obstet Gynecol. 2022;140(4):613–622. doi: 10.1097/AOG.0000000000004931
- Tack P, Victor J, Gemmel P, Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online. 2016;15(1):115. doi: 10.1186/s12938-016-0236-4
- Gao G, Ahn M, Cho WW, et al. 3D printing of pharmaceutical application: drug screening and drug delivery. Pharmaceutics. 2021;13(9):1373. doi: 10.3390/pharmaceutics13091373
- Miller AD, Krauss GL, Hamzeh FM. Improved CNS tolerability following conversion from immediate-to extended-release carbamazepine. Acta Neurol Scand. 2004;109(6):374–377. doi: 10.1111/j.1600-0404.2004.00291.x
- Mahato RI, Narang AS, Kumar V. Pharmaceutical dosage forms and drug delivery. CRC Press: Boca Raton, FL, USA; 2011. 566 р. doi: 10.1201/9781003389378
Supplementary files

