Genetic markers of endometrial hyperplasia: from pathogenesis to personalized therapy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Endometrial hyperplasia, particularly in perimenopause, constitutes a major clinical challenge in gynecology due to its high risk of malignant transformation into endometrial cancer, which is driven by a complex interplay between genetic alterations and hormonal imbalance. Evidence suggests that certain genetic markers (ESR1, C-MYC, PIK3CA, PTENP1, MTHFR, EGFR) contribute to the pathogenesis of endometrial hyperplasia by disrupting the regulation of proliferation, apoptosis, and DNA methylation. ESR1 polymorphisms increase estrogen receptor density, thereby enhancing the proliferative response of the endometrium. C-MYC overexpression correlates with progression to atypical forms, although it is also observed during physiologic regeneration. PIK3CA mutations result in constitutive activation of the PI3K/AKT/mTOR pathway and are associated with therapeutic resistance. Loss of function of the pseudogene PTENP1 disrupts regulation of the tumor suppressor PTEN, thereby promoting uncontrolled cellular proliferation. MTHFR polymorphisms impair DNA methylation and heighten susceptibility to epigenetic dysregulation. EGFR overexpression enhances proliferation through the MAPK/ERK pathway, particularly in obesity. The clinical significance of these markers is often influenced by underlying conditions, and their role remains ambiguous due to population differences and methodological heterogeneity across studies. A promising direction in the management of this condition is the development of integrative prognostic models that combine genetic testing with clinical parameters for risk stratification and early prevention of endometrial cancer.

About the authors

Alexey V. Overko

Pirogov Russian National Research Medical University

Author for correspondence.
Email: leha.overko@yandex.ru
ORCID iD: 0000-0002-4629-9074
SPIN-code: 5519-2836
Russian Federation, Moscow

Tatiana F. Kovalenko

Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: t_kov@mail.ru
ORCID iD: 0000-0001-6091-892X
SPIN-code: 6866-1360

Cand. Sci. (Biology)

Russian Federation, Moscow

Lyudmila A. Ozolinya

Pirogov Russian National Research Medical University

Email: ozolinya@yandex.ru
ORCID iD: 0000-0002-2353-123X
SPIN-code: 9407-9014

MD, Dr. Sci. (Medicine); Professor

Russian Federation, Moscow

Svetlana A. Khlynova

Pirogov Russian National Research Medical University

Email: doc-khlinova@mail.ru
ORCID iD: 0000-0003-1554-3633
SPIN-code: 7823-2660

MD, Cand. Sci. (Medicine); Assistant Professor

Russian Federation, Moscow

Tatiana N. Savchenko

Pirogov Russian National Research Medical University

Email: 12111944t@mail.ru
ORCID iD: 0000-0001-7244-4944
SPIN-code: 3157-3682

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

References

  1. Wang L, Wei W, Cai M. A review of the risk factors associated with endometrial hyperplasia during perimenopause. Int J Womens Health. 2024;16:1475–1482. doi: 10.2147/IJWH.S481509
  2. Pace L, Actis S, Mancarella M, et al. Clinical, sonographic, and hysteroscopic features of endometrial carcinoma diagnosed after hysterectomy in patients with a preoperative diagnosis of atypical hyperplasia: a single-center retrospective study. Diagnostics (Basel). 2022;12(12):3029. doi: 10.3390/diagnostics12123029
  3. Jeong O, Broaddus RR, Lessey BA, et al. MIG-6 is critical for progesterone responsiveness in human complex atypical hyperplasia and early-stage endometrial cancer. Int J Mol Sci. 2022;23(23):14596. doi: 10.3390/ijms232314596
  4. Martínez-Rodríguez A, Fuentes-Antrás J, Lorca V, et al. Molecular profiling of endocrine resistance in HR+/HER2-metastatic breast cancer: insights from extracellular vesicles-derived DNA and ctDNA in liquid biopsies. Int J Mol Sci. 2024;25(23):13045. doi: 10.3390/ijms252313045
  5. Nees LK, Heublein S, Steinmacher S, et al. Endometrial hyperplasia as a risk factor of endometrial cancer. Arch Gynecol Obstet. 2022;306(2):407–421. doi: 10.1007/s00404-021-06380-5
  6. Chen L, Zhu G, Liu Y, et al. Identification of inflammatory-related gene signatures to predict prognosis of endometrial carcinoma. BMC Genom Data. 2022;23(1):74. doi: 10.1186/s12863-022-01088-0
  7. Terlikowska KM, Dobrzycka B, Terlikowski R, et al. Clinical value of selected markers of angiogenesis, inflammation, insulin resistance and obesity in type 1 endometrial cancer. BMC Cancer. 2020;20(1):921. doi: 10.1186/s12885-020-07415-x
  8. Bhave MA, Quintanilha JCF, Tukachinsky H, et al. Comprehensive genomic profiling of ESR1, PIK3CA, AKT1, and PTEN in HR(+)HER2(−) metastatic breast cancer: prevalence along treatment course and predictive value for endocrine therapy resistance in real-world practice. Breast Cancer Res Treat 2024;207(3):599–609. doi: 10.1007/s10549-024-07376-w
  9. Zhang N, Meng Y, Mao S, et al. FBXO31-mediated ubiquitination of OGT maintains O-GlcNAcylation homeostasis to restrain endometrial malignancy. Nat Commun. 2025;16(1):1274. doi: 10.1038/s41467-025-56633-z
  10. Tolaney SM, Toi M, Neven P, et al. Clinical significance of PIK3CA and ESR1 mutations in circulating tumor DNA: analysis from the MONARCH 2 study of abemaciclib plus fulvestrant. Clin Cancer Res. 2022;28(8):1500–1506. doi: 10.1158/1078-0432.CCR-21-3276
  11. Lv M, Chen P, Bai M, et al. Progestin resistance and corresponding management of abnormal endometrial hyperplasia and endometrial carcinoma. Cancers (Basel). 2022;14(24):6210. doi: 10.3390/cancers14246210
  12. Halla K. Emerging treatment options for advanced or recurrent endometrial cancer. J Adv Pract Oncol. 2022;13(1):45–59. doi: 10.6004/jadpro.2022.13.1.4
  13. Liu NT, Perng CL, Chou YC, et al. Loss of ten-eleven translocation 1 (TET1) expression as a diagnostic and prognostic biomarker of endometrial carcinoma. PLoS One. 2021;16(11):e0259330. doi: 10.1371/journal.pone.0259330
  14. Berceanu C, Cernea N, Căpitănescu RG, et al. Endometrial polyps. Rom J Morphol Embryol. 2022;63(2):323–334. doi: 10.47162/RJME.63.2.04
  15. Taghavipour M, Sadoughi F, Mirzaei H, et al. Apoptotic functions of microRNAs in pathogenesis, diagnosis, and treatment of endometriosis. Cell Biosci. 2020;10:12. doi: 10.1186/s13578-020-0381-0
  16. Zabolotnaya MS, Levitskaya NV, Ivanov SA, Kaprin AD. Molecular features of endometrial cancer: entering the era of precision medicine. Problems in Oncology. 2023;69(6):971–976. doi: 10.37469/0507-3758-2023-69-6-971-976 EDN: HNUFFO
  17. Ma Y, Zheng L, Gao Y, et al. A comprehensive overview of circrnas: emerging biomarkers and potential therapeutics in gynecological cancers. Front Cell Dev Biol. 2021;9:709512. doi: 10.3389/fcell.2021.709512
  18. Dobroch J, Bojczuk K, Kołakowski A, et al. The exploration of chemokines importance in the pathogenesis and development of endometrial cancer. Molecules. 2022;27(7):2041. doi: 10.3390/molecules27072041
  19. Soberanis Pina P, Lheureux S. Novel molecular targets in endometrial cancer: mechanisms and perspectives for therapy. Biologics. 2024;18:79–93. doi: 10.2147/BTT.S369783
  20. De Martinis M, Sirufo MM, Nocelli C, et al. Hyperhomocysteinemia is associated with inflammation, bone resorption, vitamin B12 and folate deficiency and MTHFR C677T polymorphism in postmenopausal women with decreased bone mineral density. Int J Environ Res Public Health. 2020;17(12):4260. doi: 10.3390/ijerph17124260
  21. Bostan IS, Mihaila M, Roman V, et al. Landscape of endometrial cancer: molecular mechanisms, biomarkers, and target therapy. Cancers (Basel). 2024;16(11):2027. doi: 10.3390/cancers16112027
  22. Chen H, Strickland AL, Castrillon DH. Histopathologic diagnosis of endometrial precancers: Updates and future directions. Semin Diagn Pathol. 2022;39(3):137–147. doi: 10.1053/j.semdp.2021.12.001
  23. Ordiyants IM, Kuular AA, Yamurzina AA, Bazieva TA. Modern outlooks on prevalence of esr1 and prg polymorphism in women of reproductive age with endometrial hyperplasia. Ulyanovsk Medico-Biological Journal. 2020;(3):112–120. doi: 10.34014/2227-1848-2020-3-112-120 EDN: KIHVWD
  24. Soiffer JL, Fife AJ, Gadad SS, et al. Durable partial response to pembrolizumab, lenvatinib, and letrozole in a case of recurrent uterine carcinosarcoma with ESR1 gene amplification. Gynecol Oncol Rep. 2024;54:101426. doi: 10.1016/j.gore.2024.101426
  25. Ge Y, Ni X, Li J, et al. Roles of estrogen receptor α in endometrial carcinoma (Review). Oncol Lett. 2023;26(6):530. doi: 10.3892/ol.2023.14117
  26. Nagel A, Szade J, Iliszko M, et al. Clinical and biological significance of esr1 gene alteration and estrogen receptors isoforms expression in breast cancer patients. Int J Mol Sci. 2019;20(8):1881. doi: 10.3390/ijms20081881
  27. Li X, Lu J, Zhang L, et al. Clinical implications of monitoring ESR1 mutations by circulating tumor DNA in estrogen receptor positive metastatic breast cancer: a pilot study. Transl Oncol. 2020;13(2):321–328. doi: 10.1016/j.tranon.2019.11.007
  28. Hao Q, Wu H, Liu E, Wang L. BUB1, BUB1B, CCNA2, and CDCA8, along with miR-524-5p, as clinically relevant biomarkers for the diagnosis and treatment of endometrial carcinoma. BMC Cancer. 2023;23(1):995. doi: 10.1186/s12885-023-11515-9
  29. Ferrando L, Vingiani A, Garuti A, et al. ESR1 gene amplification and MAP3K mutations are selected during adjuvant endocrine therapies in relapsing Hormone Receptor-positive, HER2-negative breast cancer (HR+ HER2– BC). PLoS Genet. 2023;19(1):e1010563. doi: 10.1371/journal.pgen.1010563
  30. Hancock GR, Gertz J, Jeselsohn R, Fanning SW. Estrogen receptor alpha mutations, truncations, heterodimers, and therapies. Endocrinology. 2024;165(6):bqae051. doi: 10.1210/endocr/bqae051
  31. Shen J, He Y, Li S, Chen H. Crosstalk of methylation and tamoxifen in breast cancer (Review). Mol Med Rep. 2024;30(4):180. doi: 10.3892/mmr.2024.13304
  32. Wang Y, Tan S, Pan E, et al. An effective hormonal therapy for a patient with estrogen receptor 1 (ESR1)-amplified metastatic ovarian cancer: a case report. Onco Targets Ther. 2022;15:643–649. doi: 10.2147/OTT.S363856
  33. McAnulty J, DiFeo A. The Molecular ‘myc-anisms’ behind myc-driven tumorigenesis and the relevant myc-directed therapeutics. Int J Mol Sci. 2020;21(24):9486. doi: 10.3390/ijms21249486
  34. Qi Y, Ma N, Zhang J. Tripartite motif containing 33 demonstrated anticancer effect by degrading c-Myc: Limitation of glutamine metabolism and proliferation in endometrial carcinoma cells. Int J Oncol. 2023;63(6):133. doi: 10.3892/ijo.2023.5581
  35. Broeker CD, Ortiz MMO, Murillo MS, Andrechek ER. Integrative multi-omic sequencing reveals the MMTV-Myc mouse model mimics human breast cancer heterogeneity. Breast Cancer Res. 2023;25(1):120. doi: 10.1186/s13058-023-01723-3
  36. Tinsley SL, Allen-Petersen BL. PP2A and cancer epigenetics: a therapeutic opportunity waiting to happen. NAR Cancer. 2022;4(1):zcac002. doi: 10.1093/narcan/zcac002
  37. Kamentseva RS, Kharchenko MV, Gabdrahmanova GV, et al. EGF, TGF-α and amphiregulin differently regulate endometrium-derived mesenchymal stromal/stem cells. Int J Mol Sci. 2023;24(17):13408. doi: 10.3390/ijms241713408
  38. Saito A, Yoshida H, Nishikawa T, Yonemori K. Human epidermal growth factor receptor 2 targeted therapy in endometrial cancer: clinical and pathological perspectives. World J Clin Oncol. 2021;12(10):868–881. doi: 10.5306/wjco.v12.i10.868
  39. Russo M, Newell JM, Budurlean L, et al. Mutational profile of endometrial hyperplasia and risk of progression to endometrioid adenocarcinoma. Cancer. 2020;126(12):2775–2783. doi: 10.1002/cncr.32822
  40. Sabbah DA, Hajjo R, Sweidan K. Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr Top Med Chem. 2020;20(10):815–834. doi: 10.2174/1568026620666200303123102
  41. Li Y, Hung SW, Zheng X, et al. Melatonin inhibits endometriosis growth via specific binding and inhibition of EGFR phosphorylation. J Pineal Res. 2024;76(8):e70022. doi: 10.1111/jpi.70022
  42. Liu X, Yang S, Hart JR, et al. Cryo-EM structures of PI3Kα reveal conformational changes during inhibition and activation. Proc Natl Acad Sci USA. 2021;118(45):e2109327118. doi: 10.1073/pnas.2109327118
  43. Gonzalez-Bosquet J, Bakkum-Gamez JN, Weaver AL, et al. PP2A and E3 ubiquitin ligase deficiencies: Seminal biological drivers in endometrial cancer. Gynecol Oncol. 2021;162(1):182–189. doi: 10.1016/j.ygyno.2021.04.008
  44. Bredin HK, Krakstad C, Hoivik EA. PIK3CA mutations and their impact on survival outcomes of patients with endometrial cancer: a systematic review and meta-analysis. PLoS One. 2023;18(3):e0283203. doi: 10.1371/journal.pone.0283203
  45. Hayama S, Nakamura R, Ishige T, et al. The impact of PIK3CA mutations and PTEN expression on the effect of neoadjuvant therapy for postmenopausal luminal breast cancer patients. BMC Cancer. 2023;23(1):384. doi: 10.1186/s12885-023-10853-y
  46. Zhang G, Nie F, Zhao W, et al. Comparison of clinical characteristics and prognosis in endometrial carcinoma with different pathological types: a retrospective population-based study. World J Surg Oncol. 2023;21(1):357. doi: 10.1186/s12957-023-03241-0
  47. Passarelli A, Carbone V, Pignata S, et al. Alpelisib for PIK3CA-mutated advanced gynecological cancers: First clues of clinical activity. Gynecol Oncol. 2024;183:61–67. doi: 10.1016/j.ygyno.2024.02.029
  48. Xue Y, Dong Y, Lou Y, et al. PTEN mutation predicts unfavorable fertility preserving treatment outcome in the young patients with endometrioid endometrial cancer and atypical hyperplasia. J Gynecol Oncol. 2023;34(4):e53. doi: 10.3802/jgo.2023.34.e53
  49. Kovalenko TF, Morozova KV, Pavlyukov MS, et al. Methylation of the PTENP1 pseudogene as potential epigenetic marker of age-related changes in human endometrium. PLoS One. 2021;16(1):e0243093. doi: 10.1371/journal.pone.0243093
  50. Lucas E, Niu S, Aguilar M, et al. Utility of a PAX2, PTEN, and β-catenin Panel in the Diagnosis of Atypical Hyperplasia/Endometrioid Intraepithelial Neoplasia in Endometrial Polyps. Am J Surg Pathol. 2023;47(9):1019–1026. doi: 10.1097/PAS.0000000000002076
  51. Li L, Yue P, Song Q, et al. Genome-wide mutation analysis in precancerous lesions of endometrial carcinoma. J Pathol. 2021;253(1):119–128. doi: 10.1002/path.5566
  52. Gotoh O, Sugiyama Y, Tonooka A, et al. Genetic and epigenetic alterations in precursor lesions of endometrial endometrioid carcinoma. J Pathol. 2024;263(3):275–287. doi: 10.1002/path.6278
  53. Pawlik P, Kurzawińska G, Ożarowski M, et al. Common variants in one-carbon metabolism genes (MTHFR, MTR, MTHFD1) and depression in gynecologic cancers. Int J Mol Sci. 2023;24(16):12574. doi: 10.3390/ijms241612574
  54. Ye M, Xu G, Zhang L, et al. Meta analysis of methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and its association with folate and colorectal cancer. BMC Cancer. 2025;25(1):169. doi: 10.1186/s12885-025-13546-w
  55. Aguilar M, Zhang H, Zhang M, et al. Serial genomic analysis of endometrium supports the existence of histologically indistinct endometrial cancer precursors. J Pathol. 2021;254(1):20–30. doi: 10.1002/path.5628
  56. Daily LR, Boone JD, Machemehl HC, et al. Does obesity affect pathologic agreement of initial and final tumor grade of disease in endometrial cancer patients? Int J Gynecol Cancer. 2017;27(4):714–719. doi: 10.1097/IGC.0000000000000935

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).