Нейропротективное действие внеклеточных везикул, полученных из глиальных производных человека на модели глутаматной эксайтотоксичности
- Авторы: Шеденкова М.О.1, Гурьянова А.А.2, Судьина А.К.1, Гугучкин Е.П.2, Карпулевич Е.А.2, Фатхудинов Т.Х.3, Гольдштейн Д.В.1, Салихова Д.И.1
-
Учреждения:
- ФГБНУ «Медико-генетический научный центр им. Н.П. Бочкова»
- Институт системного программирования им. В.П. Иванникова РАН
- НИИ морфологии человека имени академика А.П. Авцына ФГБНУ «РНЦХ им. акад. Б.В. Петровского»
- Выпуск: Том 29, № 4 (2025): МЕДИЦИНСКАЯ ГЕНЕТИКА
- Страницы: 436-453
- Раздел: МЕДИЦИНСКАЯ ГЕНЕТИКА
- URL: https://journals.rcsi.science/2313-0245/article/view/359601
- DOI: https://doi.org/10.22363/2313-0245-2025-29-4-436-453
- EDN: https://elibrary.ru/AAGDLC
- ID: 359601
Цитировать
Полный текст
Аннотация
Актуальность. Современные исследования в области биомедицины уделяют значительное внимание разработке терапевтических препаратов на основе внеклеточных везикул, чье разнообразие определяется как источниками получения, так и возможностью направленной модификации. В представленной работе впервые проведено транскриптомное профилирование первичной культуры кортикальных нейронов при воздействии внеклеточных везикул, полученных от глиальных клеток, при глутаматной эксайтотоксичности с целью выявления дифференциально экспрессируемых генов. Материалы и методы. Внеклеточные везикулы были получены из кондиционированной среды глиальных клеток-предшественников человека с помощью ультрацентрифугирования. Модель глутаматной эксайтотоксичности проводили на первичной культуре кортикальных нейронов крыс (Р0) при добавлении 100 мкМ гутамата. Секвенирование подготовленных библиотек проводили на платформе NextSeq 1000 (Illumina, США) с использованием набора NextSeq 1000/2000 P2 Reagents kit (200 Cycles) v3, дополненного 2 % Phix (Illumina) в качестве внутреннего контроля. Критерием статистической значимости изменения экспрессии гена между группами считался FDR <0.05. Результаты и обсуждение. Транскриптомный анализ показал, что добавление внеклеточных везикул при глутаматной эксайтотоксичности приводило к повышенной экспрессии 190 генов, и к пониженной экспрессии 309 генов (p-value<0,05 и |FC|<1,5). Анализ генов с помощью базы данных Gene Onthology показал, что гены с повышенной экспрессией достоверно классифицировались по биологическим процессам. Из наиболее представленных были: регенерация, реорганизация внеклеточного матрикса и цитоскелета, поддержание гомеостаза, активация PI3K-Akt- пути и ответ на клеточный стресс. Гены с пониженной экспрессией достоверно классифицировались по группам: кальциевый транспорт, регуляция отростков нейронов, апоптоз, глумататергический синапс. Эти данные могу свидетельствовать о том, что внеклеточные везикулы запускают процессы выживания в нервных клетках при воздействии глутамата и ингибируют пути, связанные с поступлением кальция и глутамата в клетки. Выводы. Внеклеточные везикулы усиливают экспрессию генов, связанных с выживанием, и ингибируют гены, отвечающие за кальциевый транспорт и апоптоз. Результаты исследования свидетельствуют о перспективности применения внеклеточных везикул глиального происхождения в качестве основы для разработки новых терапевтических подходов к лечению неврологических заболеваний.
Об авторах
М. О. Шеденкова
ФГБНУ «Медико-генетический научный центр им. Н.П. Бочкова»
Автор, ответственный за переписку.
Email: margarita.shedenkova@gmail.com
ORCID iD: 0000-0001-7415-1520
SPIN-код: 3390-4201
г. Москва, Российская Федерация
А. А. Гурьянова
Институт системного программирования им. В.П. Иванникова РАН
Email: margarita.shedenkova@gmail.com
ORCID iD: 0000-0002-6589-2164
г. Москва, Российская Федерация
А. К. Судьина
ФГБНУ «Медико-генетический научный центр им. Н.П. Бочкова»
Email: margarita.shedenkova@gmail.com
ORCID iD: 0000-0003-3531-7684
SPIN-код: 5225-7878
г. Москва, Российская Федерация
Е. П. Гугучкин
Институт системного программирования им. В.П. Иванникова РАН
Email: margarita.shedenkova@gmail.com
ORCID iD: 0000-0001-7885-9892
г. Москва, Российская Федерация
Е. А. Карпулевич
Институт системного программирования им. В.П. Иванникова РАН
Email: margarita.shedenkova@gmail.com
ORCID iD: 0000-0002-6771-2163
SPIN-код: 8064-2794
г. Москва, Российская Федерация
Т. Х. Фатхудинов
НИИ морфологии человека имени академика А.П. Авцына ФГБНУ «РНЦХ им. акад. Б.В. Петровского»
Email: margarita.shedenkova@gmail.com
ORCID iD: 0000-0002-6498-5764
SPIN-код: 7919-8430
г. Москва, Российская Федерация
Д. В. Гольдштейн
ФГБНУ «Медико-генетический научный центр им. Н.П. Бочкова»
Email: margarita.shedenkova@gmail.com
ORCID iD: 0000-0003-2438-1605
SPIN-код: 7714-9099
г. Москва, Российская Федерация
Д. И. Салихова
ФГБНУ «Медико-генетический научный центр им. Н.П. Бочкова»
Email: margarita.shedenkova@gmail.com
ORCID iD: 0000-0001-7842-7635
SPIN-код: 1436-5027
г. Москва, Российская Федерация
Список литературы
- McEntee WJ, Crook TH. Glutamate: its role in learning, memory, and the aging brain. Psychopharmacology (Berl). 1993;111(4). doi: 10.1007/BF02253527
- Niswender CM, Conn PJ. Metabotropic glutamate receptors: Physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol. 2010;50. doi: 10.1146/annurev.pharmtox.011008.145533
- Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch. 2010;460(2). doi: 10.1007/s00424-010-0809-1
- Miladinovic T, Nashed MG, Singh G. Overview of glutamatergic dysregulation in central pathologies. Biomolecules. 2015;5(4). doi: 10.3390/biom5043112
- Kumar MA, Baba SK, Sadida HQ, Marzooqi S Al, Jerobin J, Altemani FH, Algehainy N, Alanazi MA, Abou-Samra AB, Kumar R, Al-Shabeeb Akil AS, Macha MA, Mir R, Bhat AA. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther. 2024;9(1). doi: 10.1038/s41392-024-01735-1
- Cecchin R, Troyer Z, Witwer K, Morris K V. Extracellular vesicles: The next generation in gene therapy delivery. Molecular Therapy. 2023;31(5). doi: 10.1016/j.ymthe.2023.01.021
- Salikhova D, Bukharova T, Cherkashova E, Namestnikova D, Leonov G, Nikitina M, Gubskiy I, Akopyan G, Elchaninov A, Midiber K, Bulatenco N, Mokrousova V, Makarov A, Yarygin K, Chekhonin V, Mikhaleva L, Fatkhudinov T, Goldshtein D. Therapeutic effects of hipsc-derived glial and neuronal progenitor cells-conditioned medium in experimental ischemic stroke in rats. Int J Mol Sci. 2021;22(9). doi: 10.3390/ijms22094694
- Turovsky EA, Golovicheva V V., Varlamova EG, Danilina TI, Goryunov K V., Shevtsova YA, Pevzner IB, Zorova LD, Babenko VA, Evtushenko EA, Zharikova AA, Khutornenko AA, Kovalchuk SI, Plotnikov EY, Zorov DB, Sukhikh GT, Silachev DN. Mesenchymal stromal cell-derived extracellular vesicles afford neuroprotection by modulating PI3K/AKT pathway and calcium oscillations. Int J Biol Sci. 2022;18(14). doi: 10.7150/ijbs.73747
- Bakaeva Z, Lizunova N, Tarzhanov I, Boyarkin D, Petrichuk S, Pinelis V, Fisenko A, Tuzikov A, Sharipov R, Surin A. Lipopolysaccharide From E. coli Increases Glutamate-Induced Disturbances of Calcium Homeostasis, the Functional State of Mitochondria, and the Death of Cultured Cortical Neurons. Front Mol Neurosci. 2022;14. doi: 10.3389/fnmol.2021.811171
- Andrews S, others. FastQC: a quality control tool for high throughput sequence data. 2010. Https://WwwBioinformaticsBabrahamAcUk/Projects/Fastqc/. Published online 2019.
- Bolger AM, Lohse M, Usadel B. Trimmo1. Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114-2120. doi: 10.1093/bioinformatics/btu170matic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15).
- Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4). doi: 10.1038/nmeth.4197
- Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 2015;4. doi: 10.12688/f1000research.7563.1
- Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009;26(1). doi: 10.1093/bioinformatics/btp616
- Mihelc EM, Siepe DH, Chakraborty A, Kalocsay M, Moiseenkova-Bell V. Exploring the role of TRPV2 in neuronal development. Biophys J. 2024;123(3). doi: 10.1016/j.bpj.2023.11.2380
- Kim TH, Lee HK, Seo IA, Bae HR, Suh DJ, Wu J, Rao Y, Hwang KG, Park HT. Netrin induces down-regulation of its receptor, Deleted in Colorectal Cancer, through the ubiquitin-proteasome pathway in the embryonic cortical neuron. J Neurochem. 2005;95(1). doi: 10.1111/j.1471-4159.2005.03314.x
- Wang J, Miao Y, Wicklein R, Sun Z, Wang J, Jude KM, Fernandes RA, Merrill SA, Wernig M, Garcia KC, Südhof TC. RTN4/NoGo-receptor binding to BAI adhesion-GPCRs regulates neuronal development. Cell. 2021;184(24). doi: 10.1016/j.cell.2021.10.016
- Gatto G, Dudanova I, Suetterlin P, Davies AM, Drescher U, Bixby JL, Klein R. Protein tyrosine phosphatase receptor type O inhibits trigeminal axon growth and branching by repressing TrkB and ret signaling. Ann Intern Med. 2013;158(6). doi: 10.1523/JNEUROSCI.4707-12.2013
- Kim M, Roesener AP, Mendonca PRF, Mastick GS. Robo1 and Robo2 have distinct roles in pioneer longitudinal axon guidance. Dev Biol. 2011;358(1). doi: 10.1016/j.ydbio.2011.07.025
- Zhao J, Cooper LT, Boyd AW, Bartlett PF. Decreased signalling of EphA4 improves functional performance and motor neuron survival in the SOD1G93A ALS mouse model. Sci Rep. 2018;8(1). doi: 10.1038/s41598-018-29845-1
- Yang H, Zhang M, Shi J, Zhou Y, Wan Z, Wang Y, Wan Y, Li J, Wang Z, Fei J. Brain-Specific SNAP‑25 Deletion Leads to Elevated Extracellular Glutamate Level and Schizophrenia-Like Behavior in Mice. Neural Plast. 2017;2017. doi: 10.1155/2017/4526417
- Schuster S, Rivalan M, Strauss U, Stoenica L, Trimbuch T, Rademacher N, Parthasarathy S, Lajkó D, Rosenmund C, Shoichet SA, Winter Y, Tarabykin V, Rosário M. NOMA-GAP/ARHGAP33 regulates synapse development and autistic-like behavior in the mouse. Mol Psychiatry. 2015;20(9). doi: 10.1038/mp.2015.42
- Feyder M, Karlsson RM, Mathur P, Lyman M, Bock R, Momenan R, Munasinghe J, Scattoni ML, Ihne J, Camp M, Graybeal C, Strathdee D, Begg A, Alvarez VA, Kirsch P, Rietschel M, Cichon S, Walter H, Meyer-Lindenberg A, Grant SGN, Holmes A. Association of mouse Dlg4 (PSD‑95) gene deletion and human DLG4 gene variation with phenotypes relevant to autism spectrum disorders and Williams’ syndrome. American Journal of Psychiatry. 2010;167(12). doi: 10.1176/appi.ajp.2010.10040484
- Tolve M, Ulusoy A, Patikas N, Islam KUS, Bodea GO, Öztürk E, Broske B, Mentani A, Wagener A, van Loo KMJ, Britsch S, Liu P, Khaled WT, Metzakopian E, Baader SL, Di Monte DA, Blaess S. The transcription factor BCL11A defines distinct subsets of midbrain dopaminergic neurons. Cell Rep. 2021;36(11). doi: 10.1016/j.celrep.2021.109697
- Chen B, Wang L, Li X, Shi Z, Duan J, Wei JA, Li C, Pang C, Wang D, Zhang K, Chen H, Na W, Zhang L, So KF, Zhou L, Jiang B, Yuan TF, Qu Y. Celsr2 regulates NMDA receptors and dendritic homeostasis in dorsal CA1 to enable social memory. Mol Psychiatry. 2024;29(6). doi: 10.1038/s41380-022-01664‑x
- del Puerto A, Lopez-Fonseca C, Simón-García A, Martí-Prado B, Barrios-Muñoz AL, Pose-Utrilla J, López-Menéndez C, Alcover-Sanchez B, Cesca F, Schiavo G, Campanero MR, Fariñas I, Iglesias T, Porlan E. Kidins220 sets the threshold for survival of neural stem cells and progenitors to sustain adult neurogenesis. Cell Death Dis. 2023;14(8). doi: 10.1038/s41419-023-05995-7
- Chang T, Zhang M, Zhu J, Wang H, Li C cong, Wu K, Zhang Z ru, Jiang Y hong, Wang F, Wang H tian, Wang XC, Liu Y. Simulated vestibular spatial disorientation mouse model under coupled rotation revealing potential involvement of Slc17a6. iScience. 2023;26(12). doi: 10.1016/j.isci.2023.108498
- Shen W, Kilander MBC, Bridi MS, Frei JA, Niescier RF, Huang S, Lin YC. Tomosyn regulates the small RhoA GTPase to control the dendritic stability of neurons and the surface expression of AMPA receptors. J Neurosci Res. 2020;98(6). doi: 10.1002/jnr.24608
- Harper CB, Mancini GMS, van Slegtenhorst M, Cousin MA. Altered synaptobrevin-II trafficking in neurons expressing a synaptophysin mutation associated with a severe neurodevelopmental disorder. Neurobiol Dis. 2017;108. doi: 10.1016/j.nbd.2017.08.021
- Feig LA. Regulation of neuronal function by Ras-GRF exchange factors. Genes Cancer. 2011;2(3). doi: 10.1177/1947601911408077
- Itoh M, Okuno H, Yamada D, Yamashita M, Abe M, Natsume R, Kaizuka T, Sakimura K, Hoshino M, Mishina M, Wada K, Sekiguchi M, Hayashi T. Perturbed expression pattern of the immediate early gene Arc in the dentate gyrus of GluA1 C-terminal palmitoylation-deficient mice. Neuropsychopharmacol Rep. 2019;39(1). doi: 10.1002/npr2.12044
- Ragnarsson L, Zhang Z, Das SS, Tran P, Andersson Å, des Portes V, Desmettre Altuzarra C, Remerand G, Labalme A, Chatron N, Sanlaville D, Lesca G, Anggono V, Vetter I, Keramidas A. GRIN1 variants associated with neurodevelopmental disorders reveal channel gating pathomechanisms. Epilepsia. 2023;64(12). doi: 10.1111/epi.17776
- Piechota M, Skupio U, Borczyk M, Ziółkowska B, Gołda S, Szumiec Ł, Szklarczyk-Smolana K, Bilecki W, Rodriguez Parkitna JM, Korostyński M. Glucocorticoid-Regulated Kinase CAMKIγ in the Central Amygdala Controls Anxiety-like Behavior in Mice. Int J Mol Sci. 2022;23(20). doi: 10.3390/ijms232012328
- Mohanan AG, Gunasekaran S, Jacob RS, Omkumar R V. Role of Ca2+/Calmodulin-Dependent Protein Kinase Type II in Mediating Function and Dysfunction at Glutamatergic Synapses. Front Mol Neurosci. 2022;15. doi: 10.3389/fnmol.2022.855752
- Simon R, Wiegreffe C, Britsch S. Bcl11 Transcription Factors Regulate Cortical Development and Function. Front Mol Neurosci. 2020;13. doi: 10.3389/fnmol.2020.00051
- Li H, Liu B, Lian L, Zhou J, Xiang S, Zhai Y, Chen Y, Ma X, Wu W, Hou L. High dose expression of heme oxigenase‑1 induces retinal degeneration through ER stress-related DDIT3. Mol Neurodegener. 2021;16(1). doi: 10.1186/s13024-021-00437-4
- Gadient RA, Lein P, Higgins D, Patterson PH. Effect of leukemia inhibitory factor (LIF) on the morphology and survival of cultured hippocampal neurons and glial cells. Brain Res. 1998;798(1-2). doi: 10.1016/S0006-8993(98)00236-4
- Joo JY, Schaukowitch K, Farbiak L, Kilaru G, Kim TK. Stimulus-specific combinatorial functionality of neuronal c-fos enhancers. Nat Neurosci. 2015;19(1). doi: 10.1038/nn.4170
- Huang X, Zhang W, Yang N, Zhang Y, Qin T, Ruan H, et al. Identification of HSP90B1 in pan-cancer hallmarks to aid development of a potential therapeutic target. Mol Cancer. 2024;23(1). doi: 10.1186/s12943-023-01920‑w
- Huang M, Wang J, Liu W, Zhou H. Advances in the role of the GADD45 family in neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Front Neurosci. 2024;18. doi: 10.3389/fnins.2024.1349409
- Labonté B, Jeong YH, Parise E, Issler O, Fatma M, Engmann O, Cho KA, Neve R, Nestler EJ, Koo JW. Gadd45b mediates depressive-like role through DNA demethylation. Sci Rep. 2019;9(1). doi: 10.1038/s41598-019-40844-8
- Levings DC, Pathak SS, Yang YM, Slattery M. Limited expression of Nrf2 in neurons across the central nervous system. Redox Biol. 2023;65. doi: 10.1016/j.redox.2023.102830
- Lytrivi M, Senée V, Salpea P, Fantuzzi F, Philippi A, Abdulkarim B, Sawatani T, Marín-Cañas S, Pachera N, Degavre A, Singh P, Derbois C, Lechner D, Ladrière L, Igoillo-Esteve M, Cosentino C, Marselli L, Deleuze JF, Marchetti P, Eizirik DL, Nicolino M, Chaussenot A, Julier C, Cnop M. DNAJC3 deficiency induces β-cell mitochondrial apoptosis and causes syndromic young-onset diabetes. Eur J Endocrinol. 2021;184(3). doi: 10.1530/EJE‑20-0636
- Kang L, Wang D, Shen T, Liu X, Dai B, Zhou D, Shen H, Gong J, Li G, Hu Y, Wang P, Mi X, Zhang Y, Tan X. PDIA4 confers resistance to ferroptosis via induction of ATF4/SLC7A11 in renal cell carcinoma. Cell Death Dis. 2023;14(3). doi: 10.1038/s41419-023-05719‑x
- Ousingsawat J, Wanitchakool P, Kmit A, Romao AM, Jantarajit W, Schreiber R, Kunzelmann K. Anoctamin 6 mediates effects essential for innate immunity downstream of P2X7 receptors in macrophages. Nat Commun. 2015;6. doi: 10.1038/ncomms7245
- Xia Q, Li X, Zhou H, Zheng L, Shi J. S100A11 protects against neuronal cell apoptosis induced by cerebral ischemia via inhibiting the nuclear translocation of annexin A1 article. Cell Death Dis. 2018;9(6). doi: 10.1038/s41419-018-0686-7
- Knierim E, Hirata H, Wolf NI, Morales-Gonzalez S, Schottmann G, Tanaka Y, Rudnik-Schöneborn S, Orgeur M, Zerres K, Vogt S, Van Riesen A, Gill E, Seifert F, Zwirner A, Kirschner J, Goebel HH, Hübner C, Stricker S, Meierhofer D, Stenzel W, Schuelke M. Mutations in Subunits of the Activating Signal Cointegrator 1 Complex Are Associated with Prenatal Spinal Muscular Atrophy and Congenital Bone Fractures. Am J Hum Genet. 2016;98(3). doi: 10.1016/j.ajhg.2016.01.006
- Marqués-Torrejón MÁ, Porlan E, Banito A, Gómez-Ibarlucea E, Lopez-Contreras AJ, Fernández-Capetillo Ó, Vidal A, Gil J, Torres J, Fariñas I. Cyclin-dependent kinase inhibitor p21 controls adult neural stem cell expansion by regulating Sox2 gene expression. Cell Stem Cell. 2013;12(1). doi: 10.1016/j.stem.2012.12.001
- Ting AK, Chen Y, Wen L, Yin DM, Shen C, Tao Y, Liu X, Xiong WC, Mei L. Neuregulin 1 promotes excitatory synapse development and function in GABAergic interneurons. Journal of Neuroscience. 2011;31(1). doi: 10.1523/JNEUROSCI.2538-10.2011
- Escobedo N, Contreras O, Muñoz R, Farías M, Carrasco H, Hill C, Tran U, Pryor SE, Wessely O, Copp AJ, Larraín J. Syndecan 4 interacts genetically with Vangl2 to regulate neural tube closure and planar cell polarity. Development (Cambridge). 2013;140(14). doi: 10.1242/dev.091173
- Fowke TM, Karunasinghe RN, Bai JZ, Jordan S, Gunn AJ, Dean JM. Hyaluronan synthesis by developing cortical neurons in vitro. Sci Rep. 2017;7. doi: 10.1038/srep44135
- Zhu J, Xian Q, Hou X, Wong KF, Zhu T, Chen Z, He D, Kala S, Murugappan S, Jing J, Wu Y, Zhao X, Li D, Guo J, Qiu Z, Sun L. The mechanosensitive ion channel Piezo1 contributes to ultrasound neuromodulation. Proc Natl Acad Sci U S A. 2023;120(118). doi: 10.1073/pnas.2300291120
- Huang T, Fu G, Gao J, Zhang Y, Cai W, Wu S, Jia S, Xia S, Bachmann T, Bekker A, Tao YX. Fgr contributes to hemorrhage-induced thalamic pain by activating NF-κB/ ERK1/2 pathways. JCI Insight. 2020;5(20). doi: 10.1172/jci.insight.139987
- Wang A, Zhang H, Li X, Zhao Y. Annexin A1 in the nervous and ocular systems. Neural Regen Res. 2024;19(3). doi: 10.4103/1673-5374.380882
- Zheng SL, Li ZY, Song J, Liu JM, Miao CY. Metrnl: A secreted protein with new emerging functions. Acta Pharmacol Sin. 2016;37(5). doi: 10.1038/aps.2016.9
- Iwanicka J, Balcerzyk-Matić A, Iwanicki T, Mizia-Stec K, Bańka P, Filipecki A, Gawron K, Jarosz A, Nowak T, Krauze J, Niemiec P. The Association of ADAMTS7 Gene Polymorphisms with the Risk of Coronary Artery Disease Occurrence and Cardiovascular Survival in the Polish Population: A Case-Control and a Prospective Cohort Study. Int J Mol Sci. 2024;25(4). doi: 10.3390/ijms25042274
- Pagnamenta AT, Kaiyrzhanov R, Zou Y, Da’as SI, Maroofian R, Donkervoort S, Dominik N, Lauffer M, Ferla MP, Orioli A, et al. An ancestral 10‑bp repeat expansion in VWA1 causes recessive hereditary motor neuropathy. Brain. 2021;144(2). doi: 10.1093/brain/awaa420
- Konietzny A, Bär J, Mikhaylova M. Dendritic actin cytoskeleton: Structure, functions, and regulations. Front Cell Neurosci. 2017;11. doi: 10.3389/fncel.2017.00147
- Uzor NE, Scheihing DM, Kim GS, Moruno-Manchon JF, Zhu L, Reynolds CR, Stephenson JM, Holmes A, McCullough LD, Tsvetkov AS. Aging lowers PEX5 levels in cortical neurons in male and female mouse brains. Molecular and Cellular Neuroscience. 2020;107. doi: 10.1016/j.mcn.2020.103536
- Mohammadzadeh P, Amberg GC. AXL/Gas6 signaling mechanisms in the hypothalamic-pituitary-gonadal axis. Front Endocrinol (Lausanne). 2023;14. doi: 10.3389/fendo.2023.1212104
- Kolobynina KG, Solovyova V V., Levay K, Rizvanov AA, Slepak VZ. Emerging roles of the single EF-hand Ca2+ sensor tescalcin in the regulation of gene expression, cell growth and differentiation. J Cell Sci. 2016;129(19). doi: 10.1242/jcs.191486
- Wu LY, Song YJ, Zhang CL, Liu J. KV Channel-Interacting Proteins in the Neurological and Cardiovascular Systems: An Updated Review. Cells. 2023;12(14). doi: 10.3390/cells12141894
- Gotliv IL. FXYD5: Na + /K + -ATPase regulator in health and disease. Front Cell Dev Biol. 2016;4(MAR). doi: 10.3389/fcell.2016.00026
- Shen J, Shi D, Suzuki T, Xia Z, Zhang H, Araki K, Wakana S, Takeda N, Yamamura KI, Jin S, Li Z. Severe ocular phenotypes in Rbp4‑deficient mice in the C57BL/6 genetic background. Laboratory Investigation. 2016;96(6). doi: 10.1038/labinvest.2016.39
- Reichmann F, Holzer P. Neuropeptide Y: A stressful review. Neuropeptides. 2016;55. doi: 10.1016/j.npep.2015.09.008
- Rolando C, Erni A, Grison A, Beattie R, Engler A, Gokhale PJ, Milo M, Wegleiter T, Jessberger S, Taylor V. Multipotency of Adult Hippocampal NSCs In Vivo Is Restricted by Drosha/NFIB. Cell Stem Cell. 2016;19(5). doi: 10.1016/j.stem.2016.07.003
- Carvalho SDS, Moreau MM, Hien YE, Garcia M, Aubailly N, Henderson DJ, Studer V, Sans N, Thoumine O, Montcouquiol M. Vangl2 acts at the interface between actin and N-cadherin to modulate mammalian neuronal outgrowth. Elife. 2020;9. doi: 10.7554/eLife.51822
- Cukier HN, Duarte CL, Laverde-Paz MJ, Simon SA, Van Booven DJ, Miyares AT, Whitehead PL, Hamilton-Nelson KL, Adams LD, Carney RM, Cuccaro ML, Vance JM, Pericak-Vance MA, Griswold AJ, Dykxhoorn DM. An Alzheimer’s disease risk variant in TTC3 modifies the actin cytoskeleton organization and the PI3K-Akt signaling pathway in iPSC-derived forebrain neurons. Neurobiol Aging. 2023;131. doi: 10.1016/j.neurobiolaging.2023.07.007
- Strang KH, Golde TE, Giasson BI. MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Laboratory Investigation. 2019;99(7). doi: 10.1038/s41374-019-0197‑x
- Sakabe I, Hu R, Jin L, Clarke R, Kasid UN. TMEM33: a new stress-inducible endoplasmic reticulum transmembrane protein and modulator of the unfolded protein response signaling. Breast Cancer Res Treat. 2015;153(2). doi: 10.1007/s10549-015-3536-7
- Łuczyńska K, Zhang Z, Pietras T, Zhang Y, Taniguchi H. NFE2L1/Nrf1 serves as a potential therapeutical target for neurodegenerative diseases. Redox Biol. 2024;69. doi: 10.1016/j.redox.2023.103003
- Santo EE, Paik J. FOXO in Neural Cells and Diseases of the Nervous System. In: Current Topics in Developmental Biology. Vol 127.; 2018. doi: 10.1016/bs.ctdb.2017.10.002
- Zhang Z, Zhao Y. Progress on the roles of MEF2C in neuropsychiatric diseases. Mol Brain. 2022;15(1). doi: 10.1186/s13041-021-00892-6
- Guo H, Bettella E, Marcogliese PC, Zhao R, Andrews JC, Nowakowski TJ, Gillentine MA, Hoekzema K, Wang T, Wu H, et al. Disruptive mutations in TANC2 define a neurodevelopmental syndrome associated with psychiatric disorders. Nat Commun. 2019;10(1). doi: 10.1038/s41467-019-12435-8
- Aabdien A, Sichlinger L, Borgel Z, Jones MR, Waston IA, Gatford NJF, Raval P, Tanangonan L, Powell TR, Duarte RRR, Srivastava DP. Schizophrenia risk proteins ZNF804A and NT5C2 interact in cortical neurons. European Journal of Neuroscience. 2024;59(8). doi: 10.1111/ejn.16254
- Hussain NK, Hsin H, Huganir RL, Sheng M. MINK and TNIK differentially act on Rap2‑mediated signal transduction to regulate neuronal structure and AMPA receptor function. Journal of Neuroscience. 2010;30(44). doi: 10.1523/JNEUROSCI.4124-10.2010
- Baumgärtel K, Green A, Hornberger D, Lapira J, Rex C, Wheeler DG, Peters M. PDE4D regulates Spine Plasticity and Memory in the Retrosplenial Cortex. Sci Rep. 2018;8(1). doi: 10.1038/s41598-018-22193-0
- Kritis AA, Stamoula EG, Paniskaki KA, Vavilis TD. Researching glutamate — induced cytotoxicity in different cell lines: A comparative/collective analysis/study. Front Cell Neurosci. 2015;9. doi: 10.3389/fncel.2015.00091
- Mahmoud S, Gharagozloo M, Simard C, Gris D. Astrocytes maintain glutamate homeostasis in the cns by controlling the balance between glutamate uptake and release. Cells. 2019;8(2). doi: 10.3390/cells8020184
- Proia P, Schiera G, Mineo M, Ingrassia AMR, Santoro G, Savettieri G, Di Liegro I. Astrocytes shed extracellular vesicles that contain fibroblast growth factor‑2 and vascular endothelial growth factor. Int J Mol Med. 2008;21(1). doi: 10.3892/ijmm.21.1.63
- Taylor AR, Robinson MB, Gifondorwa DJ, Tytell M, Milligan CE. Regulation of heat shock protein 70 release in astrocytes: Role of signaling kinases. Dev Neurobiol. 2007;67(13). doi: 10.1002/dneu.20559
- Montecchi T, Shaba E, De Tommaso D, Di Giuseppe F, Angelucci S, Bini L, Landi C, Baldari CT, Ulivieri C. Differential proteomic analysis of astrocytes and astrocytes-derived extracellular vesicles from control and rai knockout mice: insights into the mechanisms of neuroprotection. Int J Mol Sci. 2021;22(15). doi: 10.3390/ijms22157933
- Patel MR, Weaver AM. Astrocyte-derived small extracellular vesicles promote synapse formation via fibulin‑2‑mediated TGF-β signaling. Cell Rep. 2021;34(10). doi: 10.1016/j.celrep.2021.108829
- You Y, Borgmann K, Edara VV, Stacy S, Ghorpade A, Ikezu T. Activated human astrocyte-derived extracellular vesicles modulate neuronal uptake, differentiation and firing. J Extracell Vesicles. 2020;9(1). doi: 10.1080/20013078.2019.1706801
- Krishnan A, Areti A, Komirishetty P, Chandrasekhar A, Cheng C, Zochodne DW. Survival of compromised adult sensory neurons involves macrovesicular formation. Cell Death Discov. 2022;8(1). doi: 10.1038/s41420-022-01247-3
- Vaillant AR, Zanassi P, Walsh GS, Aumont A, Alonso A, Miller FD. Signaling mechanisms underlying reversible activity-dependent dendrite formation. Neuron. 2002;34(6). doi: 10.1016/S0896-6273(02)00717-1
Дополнительные файлы

