Опухолевые модели в изучении патогенеза и разработке методов лечения рака полости рта
- Авторы: Третьякова М.С.1, Простакишина Е.А.1, Колегова Е.С.1, Чойнзонов Е.Л.1, Денисов Е.В.1
-
Учреждения:
- Томский национальный исследовательский медицинский центр Российской академии наук
- Выпуск: Том 29, № 4 (2025): МЕДИЦИНСКАЯ ГЕНЕТИКА
- Страницы: 480-487
- Раздел: ЦИТОЛОГИЯ
- URL: https://journals.rcsi.science/2313-0245/article/view/359604
- DOI: https://doi.org/10.22363/2313-0245-2025-29-4-480-487
- EDN: https://elibrary.ru/AHVILO
- ID: 359604
Цитировать
Полный текст
Аннотация
Актуальность. Рак полости рта является одним из распространенных видов рака среди новообразований головы и шеи. Рак полости рта характеризуется плохим прогнозом, отсутствием специфических биомаркеров и высокоэффективного таргетного лечения. Для изучения патогенеза данного заболевания и разработки новых методов лечения необходимы актуальные модельные системы. Понимание молекулярных особенностей рака полости рта представляет собой один из ключевых этапов в разработке новых терапевтических стратегий. В настоящее время доступен широкий спектр биологических моделей, однако их универсальность ограничена. Экспериментальные модели для исследования рака полости рта прошли путь от клеточных культур до систем in vivo, которые имитируют патологические процессы и взаимодействие опухоли и стромы. В данном обзоре мы суммировали доступную информацию о современном состоянии экспериментальных систем рака полости рта. Существующие модели in vitro включают в себя иммортализованные и первичные клеточные линии, трехмерные модели - сфероиды и органоиды. In vivo системы представлены сингенными и ксеногенными моделями, иммунодефицитными, иммунокомпетентными, гуманизированными и генно-инженерными животными. Модельные системы in vitro эффективны в изучении биологии опухолей полости рта и оценки терапевтического агента за счет высокой воспроизводимости и скорости получения результатов. Существующие клеточные линии широко используются для фундаментальных и трансляционных исследований и являются важным звеном в доклинических испытаниях. Традиционные in vivo модели применяют во второй фазе доклинических исследований при разработке лекарственных средств и являются переходным этапом к дальнейшим клиническим испытаниям. Выводы. Несмотря на значительный прогресс в разработке различных экспериментальных моделей, каждая из них имеет свои преимущества и ограничения. Не существует универсальной модели, позволяющей полностью экстраполировать получаемые результаты на человеческий организм. Поэтому при планировании исследований важно тщательно подбирать наиболее подходящие биологические модели, исходя из поставленных задач.
Ключевые слова
Об авторах
М. С. Третьякова
Томский национальный исследовательский медицинский центр Российской академии наук
Автор, ответственный за переписку.
Email: trremar@mail.ru
ORCID iD: 0000-0002-5040-931X
SPIN-код: 5207-8330
г. Томск, Российская Федерация
Е. А. Простакишина
Томский национальный исследовательский медицинский центр Российской академии наук
Email: trremar@mail.ru
ORCID iD: 0000-0002-1405-3723
SPIN-код: 4517-4433
г. Томск, Российская Федерация
Е. С. Колегова
Томский национальный исследовательский медицинский центр Российской академии наук
Email: trremar@mail.ru
ORCID iD: 0000-0001-9122-3274
SPIN-код: 5865-1264
г. Томск, Российская Федерация
Е. Л. Чойнзонов
Томский национальный исследовательский медицинский центр Российской академии наук
Email: trremar@mail.ru
ORCID iD: 0000-0002-3651-0665
SPIN-код: 2240-8730
г. Томск, Российская Федерация
Е. В. Денисов
Томский национальный исследовательский медицинский центр Российской академии наук
Email: trremar@mail.ru
ORCID iD: 0000-0003-2923-9755
SPIN-код: 9498-5797
г. Томск, Российская Федерация
Список литературы
- Li Q, Dong H, Yang G, Song Y, Mou Y, Ni Y. Mouse Tumor-Bearing Models as Preclinical Study Platforms for Oral Squamous Cell Carcinoma. Front Oncol. 2020;10:212. doi: 10.3389/fonc.2020.00212
- Miranda-Filho A, Bray F. Global patterns and trends in cancers of the lip, tongue and mouth. Oral Oncol. 2020;102:104551. doi: 10.1016/j.oraloncology.2019.104551
- Kolegova ES, Patysheva MR, Larionova IV, Fedorova IK, Kulbakin DE, Choinzonov EL, Denisov EV. Early-onset oral cancer as a clinical entity: aetiology and pathogenesis. Int J Oral Maxillofac Surg. 2022;51(12):1497–1509. doi: 10.1016/j.ijom.2022.04.005
- Patysheva MR, Kolegova ES, Khozyainova AA, Prostakishina EA, Korobeynikov VY, Menyailo ME, et al. The Consortium E. Pathogenesis of Oral Cancer in Young A. Revealing molecular mechanisms of early-onset tongue cancer by spatial transcriptomics. Sci Rep. 2024;14(1):26255. doi: 10.1038/s41598–024–76044–2
- Luo JJ, Young CD, Zhou HM, Wang XJ. Mouse Models for Studying Oral Cancer: Impact in the Era of Cancer Immunotherapy. J Dent Res. 2018;97(6):683–690. doi: 10.1177/0022034518767635
- Shaikh MH, Dawson A, Prokopec SD, Barrett JW, Y.F. Zeng P, Khan MI, et al. Loss of LRP1B expression drives acquired chemo and radio-resistance in HPV-positive head and neck cancer. Oral Oncol. 2023;146:106580. doi: 10.1016/j.oraloncology.2023.106580
- Lakshmi T, Ezhilarasan D, Nagaich U, Vijayaragavan R. Acacia catechu Ethanolic Seed Extract Triggers Apoptosis of SCC‑25 Cells. Pharmacogn Mag. 2017;13(Suppl 3):405–411. doi: 10.4103/pm.pm_458_16
- Eloraby DAI, El-Gayar SF, El-Bolok AH, Ammar SG, El Shafei MM. In Vitro Assessment of the Cytotoxic Effect of 5-Fluorouracil, Thymoquinone and their Combination on Tongue Squamous Cell Carcinoma Cell Line. Asian Pac J Cancer Prev. 2024;25(6):2169–2176. doi: 10.31557/apjcp.2024.25.6.2169
- El-Hamid ESA, Gamal-Eldeen AM, Sharaf Eldeen AM. Liposome-coated nano doxorubicin induces apoptosis on oral squamous cell carcinoma CAL‑27 cells. Archives of Oral Biology. 2019;103:47–54. doi: 10.1016/j.archoralbio.2019.05.011
- Mentzel J, Hildebrand LS, Kuhlmann L, Fietkau R, Distel LV. Effective Radiosensitization of HNSCC Cell Lines by DNA-PKcs Inhibitor AZD7648 and PARP Inhibitors Talazoparib and Niraparib. Int J Mol Sci. 2024;25(11):5629. doi: 10.3390/ijms25115629
- Dziedzic A, Kubina R, Kabała-Dzik A, Tanasiewicz M. Induction of Cell Cycle Arrest and Apoptotic Response of Head and Neck Squamous Carcinoma Cells (Detroit 562) by Caffeic Acid and Caffeic Acid Phenethyl Ester Derivative. Evidence-Based Complementary and Alternative Medicine. 2017;2017(1):6793456. doi: 10.1155/2017/6793456
- de Llobet LI, Baro M, Mesia R, Balart J. Simvastatin Enhances the Effects of Radiotherapy and Cetuximab on a Cell Line (FaDu) Derived from a Squamous Cell Carcinoma of Head and Neck. Transl Oncol. 2014;7(4):513–522. doi: 10.1016/j.tranon.2014.02.008
- Dwivedi N, Gangadharan C, Pillai V, Kuriakose MA, Suresh A, Das M. Establishment and characterization of novel autologous pair cell lines from two Indian non-habitual tongue carcinoma patients. Oncol Rep. 2022;48(3). doi: 0.3892/or.2022.8362
- Ganjibakhsh M, Aminishakib P, Farzaneh P, Karimi A, Fazeli SAS, Rajabi M, et al. Establishment and Characterization of Primary Cultures from Iranian Oral Squamous Cell Carcinoma Patients by Enzymatic Method and Explant Culture. J Dent (Tehran). 2017;14(4):191–202. doi: 10.55463/issn.1674–2974.49.9.2
- Goldie SJ, Mulder KW, Tan DW, Lyons SK, Sims AH, Watt FM. FRMD4A upregulation in human squamous cell carcinoma promotes tumor growth and metastasis and is associated with poor prognosis. Cancer Res. 2012;72(13):3424–3436. doi: 10.1158/0008–5472.can‑12–0423
- Chaves P, Garrido M, Oliver J, Pérez-Ruiz E, Barragan I, Rueda-Domínguez A. Preclinical models in head and neck squamous cell carcinoma. Br J Cancer. 2023;128(10):1819–1827. doi: 10.1038/s41416–023–02186–1
- Ono K, Sato K, Nakamura T, Yoshida Y, Murata S, Yoshida K, et al. Reproduction of the Antitumor Effect of Cisplatin and Cetuximab Using a Three-dimensional Spheroid Model in Oral Cancer. Int J Med Sci. 2022;19(8):1320–1333. doi: 10.7150/ijms.74109
- Iannelli F, Zotti AI, Roca MS, Grumetti L, Lombardi R, Moccia T, et al. Valproic Acid Synergizes With Cisplatin and Cetuximab in vitro and in vivo in Head and Neck Cancer by Targeting the Mechanisms of Resistance. Front Cell Dev Biol. 2020;8:732. doi: 10.3389/fcell.2020.00732
- Al-Samadi A, Poor B, Tuomainen K, Liu V, Hyytiäinen A, Suleymanova I, Mesimaki K, Wilkman T, Mäkitie A, Saavalainen P, Salo T. In vitro humanized 3D microfluidic chip for testing personalized immunotherapeutics for head and neck cancer patients. Exp Cell Res. 2019;383(2):111508. doi: 10.1016/j.yexcr.2019.111508
- Driehuis E, Kolders S, Spelier S, Lõhmussaar K, Willems SM, Devriese LA, et al. Oral Mucosal Organoids as a Potential Platform for Personalized Cancer Therapy. Cancer Discov. 2019;9(7):852–871. doi: 10.1158/2159–8290.cd‑18–1522
- Khayatan D, Hussain A, Tebyaniyan H. Exploring animal models in oral cancer research and clinical intervention: A critical review. Vet Med Sci. 2023;9(4):1833–1847. doi: 10.1002/vms3.1161
- Luo JJ, Young CD, Zhou HM, Wang XJ. Mouse Models for Studying Oral Cancer: Impact in the Era of Cancer Immunotherapy. J Dent Res. 2018;97(6):683–690. doi: 10.1177/0022034518767635
- Foy JP, Tortereau A, Caulin C, Le Texier V, Lavergne E, Thomas E, et al. The dynamics of gene expression changes in a mouse model of oral tumorigenesis may help refine prevention and treatment strategies in patients with oral cancer. Oncotarget. 2016;7(24):35932–35945. doi: 10.18632/oncotarget.8321
- Demétrio de Souza França P, Guru N, Roberts S, Kossatz S, Mason C, et al. Fluorescence-guided resection of tumors in mouse models of oral cancer. Sci Rep. 2020;10(1):11175. doi: 10.1038/s41598–020–67958–8
- Chen YF, Chang KW, Yang IT, Tu HF, Lin SC. Establishment of syngeneic murine model for oral cancer therapy. Oral Oncol. 2019;95:194–201. doi: 10.1016/j.oraloncology.2019.06.026
- Ishida K, Tomita H, Nakashima T, Hirata A, Tanaka T, Shibata T, Hara A. Current mouse models of oral squamous cell carcinoma: Genetic and chemically induced models. Oral Oncol. 2017;73:16–20. doi: 10.1016/j.oraloncology.2017.07.028
- Dong H, Su H, Chen L, Liu K, Hu H-m, Yang W, Mou Y. Immunocompetence and mechanism of the DRibble-DCs vaccine for oral squamous cell carcinoma. Cancer Management and Research. 2018;10:493–501. doi: 10.2147/CMAR.S155914
- Nagaya T, Nakamura Y, Okuyama S, Ogata F, Maruoka Y, Choyke PL, Allen C, Kobayashi H. Syngeneic Mouse Models of Oral Cancer Are Effectively Targeted by Anti–CD44-Based NIR-PIT. Molecular Cancer Research. 2017;15(12):1667. doi: 10.1158/1541–7786.mcr‑17–0333
- Chung MK, Jung YH, Lee JK, Cho SY, Murillo-Sauca O, Uppaluri R, Shin JH, Sunwoo JB. CD271 Confers an Invasive and Metastatic Phenotype of Head and Neck Squamous Cell Carcinoma through the Upregulation of Slug. Clinical Cancer Research. 2018;24(3):674–683. doi: 10.1158/1078–0432.CCR‑17–0866
- Judd NP, Allen CT, Winkler AE, Uppaluri R. Comparative analysis of tumor-infiltrating lymphocytes in a syngeneic mouse model of oral cancer. Otolaryngol Head Neck Surg. 2012;147(3):493–500. doi: 10.1177/0194599812442037
- Oweida A, Lennon S, Calame D, Korpela S, Bhatia S, Sharma J, et al. Ionizing radiation sensitizes tumors to PD-L1 immune checkpoint blockade in orthotopic murine head and neck squamous cell carcinoma. Oncoimmunology. 2017;6(10): e1356153. doi: 10.1080/2162402x.2017.1356153
- Kerk SA, Finkel KA, Pearson AT, Warner KA, Zhang Z, Nör F, et al. 5T4-Targeted Therapy Ablates Cancer Stem Cells and Prevents Recurrence of Head and Neck Squamous Cell Carcinoma. Clinical Cancer Research. 2017;23(10):2516–2527. doi: 10.1158/1078–0432.ccr‑16–1834
- Fang Z, Zhao J, Xie W, Sun Q, Wang H, Qiao B. LncRNA UCA1 promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by sunppressing miR‑184 expression. Cancer Med. 2017;6(12):2897–2908. doi: 10.1002/cam4.1253
- Feng X, Luo Q, Zhang H, Wang H, Chen W, Meng G, Chen F. The role of NLRP3 inflammasome in 5‑fluorouracil resistance of oral squamous cell carcinoma. Journal of Experimental & Clinical Cancer Research. 2017;36(1):81. doi: 10.1186/s13046–017–0553‑x
- Ozawa H, Ranaweera RS, Izumchenko E, Makarev E, Zhavoronkov A, Fertig EJ, et al. SMAD4 Loss Is Associated with Cetuximab Resistance and Induction of MAPK/JNK Activation in Head and Neck Cancer Cells. Clinical Cancer Research. 2017;23(17):5162–5175. doi: 10.1158/1078–0432.ccr‑16–1686
- Wang Y, Zhu Y, Wang Q, Hu H, Li Z, Wang D, Zhang W, Qi B, Ye J, Wu H, Jiang H, Liu L, Yang J, Cheng J. The histone demethylase LSD1 is a novel oncogene and therapeutic target in oral cancer. Cancer Lett. 2016;374(1):12–21. doi: 10.1016/j.canlet.2016.02.004
- Tretyakova MS, Bokova UA, Korobeynikova AA, Denisov EV. Experimental models of tumor growth in soft tissue sarcomas. RUDN Journal of Medicine. 2023;27(4):459–469. doi: 10.22363/2313-0245-2023-27-4-459-469. (In Russian).
- Masood R, Hochstim C, Cervenka B, Zu S, Baniwal SK, Patel V, Kobielak A, Sinha UK. A novel orthotopic mouse model of head and neck cancer and lymph node metastasis. Oncogenesis. 2013;2(9): e68. doi: 10.1038/oncsis.2013.33
- Tan MT, Wu JG, Callejas-Valera JL, Schwarz RA, Gillenwater AM, Richards-Kortum RR, Vigneswaran N. A PIK3CA transgenic mouse model with chemical carcinogen exposure mimics human oral tongue tumorigenesis. Int J Exp Pathol. 2020;101(1–2):45–54. doi: 10.1111/iep.12347
- Lin YH, Yang MC, Tseng SH, Jiang R, Yang A, Farmer E, et al. Integration of Oncogenes via Sleeping Beauty as a Mouse Model of HPV16(+) Oral Tumors and Immunologic Control. Cancer Immunol Res. 2018;6(3):305–319. doi: 10.1158/2326–6066.cir‑16–0358
- Kalish JM, Tang XH, Scognamiglio T, Zhang T, Gudas LJ. Doxycycline-induced exogenous Bmi‑1 expression enhances tumor formation in a murine model of oral squamous cell carcinoma. Cancer Biol Ther. 2020;21(5):400–411. doi: 10.1080/15384047.2020.1720485
- Lysenko V, McHugh D, Behrmann L, Rochat MA, Wilk CM, Kovtonyuk L, et al. Humanised mouse models for haematopoiesis and infectious diseases. Swiss Med Wkly. 2017;147: w14516. doi: 10.4414/smw.2017.14516
- Schifflers C, Zottnick S, Förster JD, Kruse S, Yang R, Wiethoff H, et al. Development of an Orthotopic HPV16-Dependent Base of Tongue Tumor Model in MHC-Humanized Mice. Pathogens. 2023;12(2):188. doi: 10.3390/pathogens12020188
- Yahya F, Mohd Bakri M, Hossain MZ, Syed Abdul Rahman SN, Mohammed Alabsi A, Ramanathan A. Combination Treatment of TRPV4 Agonist with Cisplatin Promotes Vessel Normalization in an Animal Model of Oral Squamous Cell Carcinoma. Medicina (Kaunas). 2022;58(9). doi: 10.3390/medicina58091229
- Cannon CM, Trembley JH, Kren BT, Unger GM, O’Sullivan MG, Cornax I, Modiano JF, Ahmed K. Therapeutic Targeting of Protein Kinase CK2 Gene Expression in Feline Oral Squamous Cell Carcinoma: A Naturally Occurring Large-Animal Model of Head and Neck Cancer. Hum Gene Ther Clin Dev. 2017;28(2):80–86. doi: 10.1089/humc.2017.008
- Goldberg M, Manzi A, Birdi A, Laporte B, Conway P, Cantin S, Mishra V, Singh A, Pearson AT, Goldberg ER, Goldberger S, Flaum B, Hasina R, London NR, Gallia GL, Bettegowda C, Young S, Sandulache V, Melville J, Shum J, O’Neill SE, Aydin E, Zhavoronkov A, Vidal A, Soto A, Alonso MJ, Rosenberg AJ, Lingen MW, D’Cruz A, Agrawal N, Izumchenko E. A nanoengineered topical transmucosal cisplatin delivery system induces anti-tumor response in animal models and patients with oral cancer. Nat Commun. 2022;13(1):4829. doi: 10.1038/s41467–022–31859–3
- Monti-Hughes A, Aromando RF, Pérez MA, Schwint A, EItoiz ME. The hamster cheek pouch model for field cancerization studies. Periodontology 2000. 2015;67(1):292–311. doi: 10.1111/prd.12066
Дополнительные файлы

