Секвенирование РНК единичных клеток: современные подходы и достижения
- Авторы: Гусев А.Е.1, Чернов П.В.1, Дмитриев Н.А.1, Кофиади И.А.1
-
Учреждения:
- Государственный научный центр «Институт иммунологии» Федерального медико-биологического агентства
- Выпуск: Том 29, № 4 (2025): МЕДИЦИНСКАЯ ГЕНЕТИКА
- Страницы: 421-435
- Раздел: МЕДИЦИНСКАЯ ГЕНЕТИКА
- URL: https://journals.rcsi.science/2313-0245/article/view/359600
- DOI: https://doi.org/10.22363/2313-0245-2025-29-4-421-435
- EDN: https://elibrary.ru/AAFUKT
- ID: 359600
Цитировать
Полный текст
Аннотация
Актуальность. Метод секвенирования РНК единичных клеток (scRNA-seq) является современным подходом к изучению разнообразия и неоднородности транскриптов РНК в отдельных клетках, а также к выявлению состава различных типов клеток и функций в организмах, органах и тканях. Основанный на методе NGS (секвенирование нового поколения) метод scRNA-seq предоставляет огромный объем информации при глубоком клеточном разрешении в различных областях, позволяя делать новые открытия в понимании состава и паттернов взаимодействия отдельных типов клеток в организме человека, модельных животных и растений. Несмотря на активное развитие, оптимизацию и автоматизацию в течение последних 15 лет по всему миру, в нашей стране метод scRNA-seq является относительно новым и применяется сравнительно недавно. Задача освоения и успешного внедрения в практику данного метода актуальна и критична - метод является мощным инструментом для глубокого анализа и диагностики, о чем свидетельствуют результаты исследований, в которых он применялся. В обзоре представлены основные принципы и шаги реализации метода scRNA-seq как в разрезе технической реализации и пробоподготовки в виде надстройки над классическим методом NGS, так и в усложнении и расширении процесса обработки полученных данных, применения новых алгоритмов и баз данных. Рассмотрены уже имеющиеся на рынке коммерчески доступные технологий scRNA-seq и технологии, описанные в научных источниках, послужившие им в качестве прототипов и альтернатив. Представлены примеры и результаты использования таких технологий в различных областях науки и медицины таких как онкология, сенесценция, диагностика и клинические исследования. Выводы. Разработка и успешное применение метода scRNA-seq в научной и клинической практике станет залогом широкого спектра будущих открытий и основой персонализированной диагностики и здравоохранения.
Об авторах
А. Е. Гусев
Государственный научный центр «Институт иммунологии» Федерального медико-биологического агентства
Email: kofiadi@mail.ru
ORCID iD: 0009-0002-5810-098X
SPIN-код: 4385-0589
г. Москва, Российская Федерация
П. В. Чернов
Государственный научный центр «Институт иммунологии» Федерального медико-биологического агентства
Email: kofiadi@mail.ru
ORCID iD: 0009-0005-0642-8723
г. Москва, Российская Федерация
Н. А. Дмитриев
Государственный научный центр «Институт иммунологии» Федерального медико-биологического агентства
Email: kofiadi@mail.ru
ORCID iD: 0009-0002-8381-8512
г. Москва, Российская Федерация
И. А. Кофиади
Государственный научный центр «Институт иммунологии» Федерального медико-биологического агентства
Автор, ответственный за переписку.
Email: kofiadi@mail.ru
ORCID iD: 0000-0001-9280-8282
SPIN-код: 5730-0925
г. Москва, Российская Федерация
Список литературы
- Hatton IA, Galbraith ED, Merleau NSC, Miettinen TP, Smith BM, Shander JA. The human cell count and size distribution. Proceedings of the National Academy of Sciences. 2023;120(39). doi: 10.1073/pnas.2303077120
- Pareek CS, Smoczynski R, Tretyn A. Sequencing technologies and genome sequencing. Journal of Applied Genetics. 2011;52(4):413–435. doi: 10.1007/s13353-011-0057‑x
- Hu T, Chitnis N, Monos D, Dinh A. Next-generation sequencing technologies: An overview. Human Immunology. 2021;82(11):801–811. doi: 10.1016/j.humimm.2021.02.012
- Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. Journal of Molecular Biology. 1975;94(3):441–448. doi: 10.1016/0022–2836 (75) 90213-2
- Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences. 1977;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463
- Thermo Fisher Scientific [Internet]. Ion Torrent Next-Generation Sequencing Instruments [Accessed July 31, 2025]. Available from: https://www.thermofisher.com/ru/ru/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence.html
- Merriman B, Rothberg JM. Progress in Ion Torrent semiconductor chip based sequencing. Electrophoresis. 2012;33(23):3397–3417. doi: 10.1002/elps.201200424
- Illumina [Internet]. Explore Illumina sequencing technology [Accessed July 31, 2025]. Available from: https://www.illumina.com/science/technology/next-generation-sequencing/sequencing-technology.html
- Illumina [Internet]. Bringing next-generation sequencing to clinical labs [Accessed July 31, 2025]. Available from: https://www.illumina.com/systems/ivd-instruments.html
- BGI/MGI [Internet]. Introduction to MGI sequencing technology [Accessed July 31, 2025]. Available from: https://en.mgi-tech.com/products/resources
- BGI/MGI [Internet]. Sequencer Products. Platforms [Accessed July 31, 2025]. Available from: https://en.genomics.cn/en-sequencplatform.html
- PacBio [Internet]. Introducing the Sequel System: The Scalable Platform for SMRT Sequencing [Accessed July 31, 2025]. Available from: https://www.pacb.com/blog/introducing-the-sequel-system-the-scalable-platform-for-smrt-sequencing/
- PacBio [Internet]. Human genomics solutions [Accessed July 31, 2025]. Available from: https://www.pacb.com/human-genomics/
- ONT [Internet]. About [Accessed July 31, 2025]. Available from: https://nanoporetech.com/about
- Jain M, Olsen HE, Paten B, Akeson M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biology. 2016;17(1). doi: 10.1186/s13059-016-1103-0
- Wang ET, Sandberg R, Luo S, Khrebutkova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456(7221):470–476. doi: 10.1038/nature07509
- Cacchiarelli D, Trapnell C, Ziller MJ, et al. Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency. Cell. 2015;162(2):412–424. doi: 10.1016/j.cell.2015.06.016
- Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer causation. Nature Reviews Cancer. 2007;7(4):233–245. doi: 10.1038/nrc2091
- Trapnell C. Defining cell types and states with single-cell genomics. Genome Research. 2015;25(10):1491–1498. doi: 10.1101/gr.190595.115
- Plasschaert LW, Žilionis R, Choo-Wing R, Savova V, Knehr J. Roma G, Klein AM, Jaffe AB. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature. 2018;560(7718):377–381. doi: 10.1038/s41586-018-0394-6
- Suo S, Zhu Q, Saadatpour A, Fei L, Guo G, Yuan GC. Revealing the critical regulators of cell identity in the Mouse cell Atlas. Cell Reports. 2018;25(6):1436–1445.e3. doi: 10.1016/j.celrep.2018.10.045
- Velasco S, Kedaigle AJ, Simmons SK, et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature. 2019;570(7762):523–527. doi: 10.1038/s41586-019-1289‑x
- Fischer DS, Fiedler AK, Kernfeld EM, Genda RMJ, Bastidas-Ponce A, Bakhti M, Lickert H, Hasenauer J, Maehr R, Theis F. Inferring population dynamics from single-cell RNA-sequencing time series data. Nature Biotechnology. 2019;37(4):461–468. doi: 10.1038/s41587-019-0088-0
- Liu Z, Wang L, Welch JD, et al. Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte. Nature. 2017;551(7678):100–104. doi: 10.1038/nature24454
- Cacchiarelli D, Qiu X, Srivatsan S, et al. Aligning Single-Cell developmental and reprogramming trajectories identifies molecular determinants of myogenic reprogramming outcome. Cell Systems. 2018;7(3):258–268.e3. doi: 10.1016/j.cels.2018.07.006
- Van Dijk D, Sharma R, Nainys J, et al. Recovering Gene Interactions from Single-Cell Data Using Data Diffusion. Cell. 2018;174(3):716–729.e27. doi: 10.1016/j.cell.2018.05.061
- Hayashi T, Ozaki H, Sasagawa Y, Umeda M, Danno H, Nikaido I. Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs. Nature Communications. 2018;9(1). doi: 10.1038/s41467-018-02866-0
- Savas P, Virassamy B, Ye C. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nature Medicine. 2018;24(7):986–993. doi: 10.1038/s41591-018-0078-7
- Moghe I, Loupy A, Solez K. The Human Cell Atlas Project by the numbers: Relationship to the Banff Classification. American Journal of Transplantation. 2018;18(7):1830. doi: 10.1111/ajt.14757
- Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nature Methods. 2009;6(5):377–382. doi: 10.1038/nmeth.1315
- Perik-Zavodskaia OYu, Perik-Zavodskii RYu, Sennikov SV. Innovative approaches in immunology: single cell multi-omics and spatial transcriptomics. Immunologiya. 2024;45(4):414–426. doi: 10.33029/1816-2134-2024-45-4-414-426 (In Russian). [Перик-Заводская О.Ю., Перик-Заводский Р.Ю., Сенников С.В. Инновационные подходы в иммунологии: мультиомика единичных клеток и пространственная транскриптомика // Иммунология. 2024; 45 (4): 414–426 DOI: https://doi.org/10.33029/1816-2134-2024-45-4-414-426]
- Hedlund E, Deng Q. Single-cell RNA sequencing: Technical advancements and biological applications. Molecular Aspects of Medicine. 2017;59:36–46. doi: 10.1016/j.mam.2017.07.003
- Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Experimental & Molecular Medicine. 2018;50(8):1–14. doi: 10.1038/s12276-018-0071-8
- Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaument-Adkins A, Smets M, Leonhards H, Heyn H, Hellmann I, Enard W. Comparative analysis of Single-Cell RNA sequencing Methods. Molecular Cell. 2017;65(4):631–643.e4. doi: 10.1016/j.molcel.2017.01.023
- Sanz E, Yang L, Su T, Morris DR, McKnight GS, Amieux PS. Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proceedings of the National Academy of Sciences. 2009;106(33):13939–13944. doi: 10.1073/pnas.0907143106
- Zeb Q, Wang C, Shafiq S, Liu L. An overview of Single-Cell isolation techniques. In: Elsevier eBooks.; 2019:101–135. doi: 10.1016/b978-0-12-814919-5.00006-3
- Macosko EZ, Basu A, Satija R. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202–1214. doi: 10.1016/j.cell.2015.05.002
- Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, Lönnerberg P, Linnarsson S. Quantitative single-cell RNA-seq with unique molecular identifiers. Nature Methods. 2013;11(2):163–166. doi: 10.1038/nmeth.2772
- Senabouth A, Andersen S, Shi Q, et al. Comparative performance of the BGI and Illumina sequencing technology for single-cell RNA-sequencing. NAR Genomics and Bioinformatics. 2020;2(2). doi: 10.1093/nargab/lqaa034
- Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics. Nature Reviews Genetics. 2015;16(3):133–145. doi: 10.1038/nrg3833
- Lähnemann D, Köster J, Szczurek E, et al. Eleven grand challenges in single-cell data science. Genome Biology. 2020;21(1). doi: 10.1186/s13059-020-1926-6
- scRNA-tools [Internet]. scRNA-tools page [Accessed July 31, 2025]. Available from: https://www.scrna-tools.org
- Luecken MD, Theis FJ. Current best practices in single‐cell RNA‐seq analysis: a tutorial. Molecular Systems Biology. 2019;15(6). doi: 10.15252/msb.20188746
- Neu KE, Tang Q, Wilson PC, Khan AA. Single-Cell Genomics: Approaches and utility in Immunology. Trends in Immunology. 2017;38(2):140–149. doi: 10.1016/j.it.2016.12.001
- Slovin S, Carissimo A, Panariello F, Grimaldi A, Bouché V, Gambardella G, Cacchiarelli D. Single-Cell RNA sequencing Analysis: A Step-by-Step Overview. Methods in Molecular Biology. January 2021:343–365. doi: 10.1007/978-1-0716-1307-8_19
- Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature Biotechnology. 2018;36(5):411–420. doi: 10.1038/nbt.4096
- Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. Genome Biology. 2018;19(1). doi: 10.1186/s13059-017-1382-0
- Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nature Biotechnology. 2014;32(4):381–386. doi: 10.1038/nbt.2859
- Cao J, Spielmann M, Qiu X. The single-cell transcriptional landscape of mammalian organogenesis. Nature. 2019;566(7745):496–502. doi: 10.1038/s41586-019-0969‑x
- Gambardella G, Di Bernardo D. A tool for visualization and analysis of Single-Cell RNA-Seq data based on text mining. Frontiers in Genetics. 2019;10. doi: 10.3389/fgene.2019.00734
- Github [Internet]. scRNA-seq chapter [Accessed July 31, 2025]. Available from: https://github.com/gambalab/scRNAseq_chapter
- Goetz JJ, Trimarchi JM. Transcriptome sequencing of single cells with Smart-Seq. Nature Biotechnology. 2012;30(8):763–765. doi: 10.1038/nbt.2325
- Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nature Methods. 2013;10(11):1096–1098. doi: 10.1038/nmeth.2639
- Sheng K, Cao W, Niu Y, Deng Q, Zong C. Effective detection of variation in single-cell transcriptomes using MATQ-seq. Nature Methods. 2017;14(3):267–270. doi: 10.1038/nmeth.4145
- Hashimshony T, Wagner F, Sher N, Yanai I. CEL-SEQ: Single-Cell RNA-SeQ by multiplexed linear amplification. Cell Reports. 2012;2(3):666–673. doi: 10.1016/j.celrep.2012.08.003
- Jaitin DA, Kenigsberg E, Keren-Shaul H. Massively Parallel Single-Cell RNA-Seq for Marker-Free Decomposition of Tissues into Cell Types. Science. 2014;343(6172):776–779. doi: 10.1126/science.1247651
- Xin Y, Kim J, Ni M, et al. Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells. Proceedings of the National Academy of Sciences. 2016;113(12):3293–3298. doi: 10.1073/pnas.1602306113
- Gierahn TM, Wadsworth MH, Hughes TK, Bryson BD, Butler A, Satija R, Fortune S, Love JC, Shalek AK. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nature Methods. 2017;14(4):395–398. doi: 10.1038/nmeth.4179
- Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW. Droplet barcoding for Single-Cell transcriptomics applied to embryonic stem cells. Cell. 2015;161(5):1187–1201. doi: 10.1016/j.cell.2015.04.044
- Zheng GXY, Terry JM, Belgrader P. Massively parallel digital transcriptional profiling of single cells. Nature Communications. 2017;8(1). doi: 10.1038/ncomms14049
- Liu C, Wu T, Fan F, et al. A portable and cost-effective microfluidic system for massively parallel single-cell transcriptome profiling. bioRxiv (Cold Spring Harbor Laboratory). October 2019. doi: 10.1101/818450
- Takara Bio [Internet]. SMART-Seq mRNA Single Cell LP and SMART-Seq mRNA Single Cell [Accessed July 31, 2025]. Available from: https://www.takarabio.com/products/next-generation-sequencing/rna-seq/mrna-seq/full-length-mrna-seq/smart-seq-mrna-single-cell-lp-and-smart-seq-mrna-single-cell
- BD Bioscience [Internet]. BD Rhapsody [Accessed July 31, 2025]. Available from: https://www.bdbiosciences.com/en-us/products/instruments/single-cell-multiomics-systems/rhapsody
- Scale Bioscience [Internet]. QuantumScale Single Cell RNA [Accessed July 31, 2025]. Available from: https://scale.bio/single-cell-rna-sequencing-kit/
- Singleron [Internet]. Single Cell RNA Sequencing [Accessed July 31, 2025]. Available from: https://singleron.bio/single-cell-sequencing-solutions/
- X Genomics [Internet]. Chromium Single Cell [Accessed July 31, 2025]. Available from: https://www.10xgenomics.com/platforms/chromium
- BGI/MGI [Internet]. Single Cell RNA-Seq [Accessed July 31, 2025]. Available from: https://www.bgi.com/us/high-throughput-single-cell-rna-seq
- BIO-RAD [Internet]. ddSEQ Single-Cell 3’ RNA-Seq & Omnition Analysis Software [Accessed July 31, 2025]. Available from: https://www.bio-rad.com/ru-ru/product/ddseq-single-cell‑3‑rna-seq-kit-omnition-analysis-software? ID=b4738e36–858d-e6a0–61d9–8d96d3d521b8
- Gao C, Zhang M, Chen L. The comparison of two single-cell sequencing platforms: BD Rhapsody and 10X Genomics Chromium. Current Genomics. 2020;21(8):602–609. doi: 10.2174/1389202921999200625220812
- Lei Y, Tang R, Xu J, Wang W, Zhang B, Liu J, Yu X, Shi S. Applications of single-cell sequencing in cancer research: progress and perspectives. Journal of Hematology & Oncology. 2021;14(1). doi: 10.1186/s13045-021-01105-2
- Wu J, Xiao Y, Sun J. A single-cell survey of cellular hierarchy in acute myeloid leukemia. Journal of Hematology & Oncology. 2020;13(1). doi: 10.1186/s13045-020-00941‑y
- Rozenblatt-Rosen O, Regev A, Oberdoerffer P, et al. The Human Tumor Atlas Network: Charting Tumor Transitions across Space and Time at Single-Cell Resolution. Cell. 2020;181(2):236–249. doi: 10.1016/j.cell.2020.03.053
- Chen Z, Zhou L, Liu L, Hou Y, Xiong M, Yang Y, Hu J, Chen K. Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nature Communications. 2020;11(1). doi: 10.1038/s41467-020-18916-5
- Sinjab A, Han G, Treekitkarnmongkol W. Resolving the spatial and cellular architecture of lung adenocarcinoma by multiregion Single-Cell sequencing. Cancer Discovery. 2021;11(10):2506–2523. doi: 10.1158/2159-8290.cd‑20-1285
- Pal B, Chen Y, Vaillant F. A single‐cell RNA expression atlas of normal, preneoplastic and tumorigenic states in the human breast. The EMBO Journal. 2021;40(11). doi: 10.15252/embj.2020107333
- Wagner J, Rapsomaniki MA, Chevrier S. A Single-Cell atlas of the tumor and immune ecosystem of human breast cancer. Cell. 2019;177(5):1330–1345.e18. doi: 10.1016/j.cell.2019.03.005
- Hu Q, Hong Y, Qi P, et al. Atlas of breast cancer infiltrated B-lymphocytes revealed by paired single-cell RNA-sequencing and antigen receptor profiling. Nature Communications. 2021;12(1). doi: 10.1038/s41467-021-22300-2
- Mathewson ND, Ashenberg O, Tirosh I. Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis. Cell. 2021;184(5):1281–1298.e26. doi: 10.1016/j.cell.2021.01.022
- Zheng Y, Chen Z, Han Y, et al. Immune suppressive landscape in the human esophageal squamous cell carcinoma microenvironment. Nature Communications. 2020;11(1). doi: 10.1038/s41467-020-20019-0
- Yuan H, Yan M, Zhang G. CancerSEA: a cancer single-cell state atlas. Nucleic Acids Research. 2018;47(D1): D900-D908. doi: 10.1093/nar/gky939
- Pritykin Y, Van Der Veeken J, Pine AR, Zhong Y, Sahin M, Mazutis L, Pe’er D, Rudensky AY, Leslie CS. A unified atlas of CD8 T cell dysfunctional states in cancer and infection. Molecular Cell. 2021;81(11):2477–2493.e10. doi: 10.1016/j.molcel.2021.03.045
- Cheng S, Li Z, Gao R. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell. 2021;184(3):792–809.e23. doi: 10.1016/j.cell.2021.01.010
- Marcu A, Bichmann L, Kuchenbecker L, et al. HLA Ligand Atlas: a benign reference of HLA-presented peptides to improve T-cell-based cancer immunotherapy. Journal for ImmunoTherapy of Cancer. 2021;9(4): e002071. doi: 10.1136/jitc‑2020–002071
- Buechler MB, Pradhan RN, Krishnamurty AT. Cross-tissue organization of the fibroblast lineage. Nature. 2021;593(7860):575–579. doi: 10.1038/s41586-021-03549-5
- Liudahl SM, Betts CB, Sivagnanam S, et al. Leukocyte Heterogeneity in Pancreatic Ductal Adenocarcinoma: Phenotypic and Spatial Features Associated with Clinical Outcome. Cancer Discovery. 2021;11(8):2014–2031. doi: 10.1158/2159-8290.cd‑20-0841
- Coons AH, Creech HJ, Jones RN. Immunological properties of an antibody containing a fluorescent group. Experimental Biology and Medicine. 1941;47(2):200–202. doi: 10.3181/00379727-47-13084p
- Gall JG, Pardue ML. Formation and detection of rna-dna hybrid molecules in cytological preparations. Proceedings of the National Academy of Sciences. 1969;63(2):378–383. doi: 10.1073/pnas.63.2.378
- Geng S, Wang J, Zhang X, et al. Single-cell RNA sequencing reveals chemokine self-feeding of myeloma cells promotes extramedullary metastasis. FEBS Letters. 2019;594(3):452–465. doi: 10.1002/1873-3468.13623
- Jackson HW, Fischer JR, Zanotelli VRT, et al. The single-cell pathology landscape of breast cancer. Nature. 2020;578(7796):615–620. doi: 10.1038/s41586-019-1876‑x
- Moncada R, Barkley D, Wagner F, Chiodin M, Devlin JC, Baron M, Hajdu CH, Simeone DM, Yanai I. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nature Biotechnology. 2020;38(3):333–342. doi: 10.1038/s41587-019-0392-8
- Ståhl PL, Salmén F, Vickovic S. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016;353(6294):78–82. doi: 10.1126/science.aaf2403
- Li J, Wang R, Zhou X, et al. Genomic and transcriptomic profiling of carcinogenesis in patients with familial adenomatous polyposis. Gut. 2019;69(7):1283–1293. doi: 10.1136/gutjnl‑2019-319438
- Praktiknjo SD, Obermayer B, Zhu Q, Fang L, Liu H, Quinn H, Stoeckius M, Kocks C, Birchmeier W, Rajewsky N. Tracing tumorigenesis in a solid tumor model at single-cell resolution. Nature Communications. 2020;11(1). doi: 10.1038/s41467-020-14777-0
- Chen YC, Sahoo S, Brien R. Single-cell RNA-sequencing of migratory breast cancer cells: discovering genes associated with cancer metastasis. The Analyst. 2019;144(24):7296–7309. doi: 10.1039/c9an01358j
- Wouters J, Kalender-Atak Z, Minnoye L. Robust gene expression programs underlie recurrent cell states and phenotype switching in melanoma. Nature Cell Biology. 2020;22(8):986–998. doi: 10.1038/s41556-020-0547-3
- Cook DP, Vanderhyden BC. Ovarian cancer and the evolution of subtype classifications using transcriptional profiling†. Biology of Reproduction. 2019;101(3):645–658. doi: 10.1093/biolre/ioz099
- Liu Y, Ye G, Huang L, Zhang C, Sheng Y, Wu B, Han L, Wu C, Dong B, Qi Y. Single-cell transcriptome analysis demonstrates inter-patient and intra-tumor heterogeneity in primary and metastatic lung adenocarcinoma. Aging. 2020;12(21):21559–21581. doi: 10.18632/aging.103945
- Zhang M, Hu S, Min M, Ni Y, Lu Z, Sun X, Wu J, Liu B, Ying X, Liu Y. Dissecting transcriptional heterogeneity in primary gastric adenocarcinoma by single cell RNA sequencing. Gut. 2020;70(3):464–475. doi: 10.1136/gutjnl‑2019-320368
- Peng J, Sun BF, Chen CY, et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Research. 2019;29(9):725–738. doi: 10.1038/s41422-019-0195‑y
- Kim N, Kim HK, Lee K. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nature Communications. 2020;11(1). doi: 10.1038/s41467-020-16164-1
- Kim S, Kim C. Transcriptomic Analysis of Cellular Senescence: One Step Closer to Senescence Atlas. Molecules and Cells. 2021;44(3):136–145. doi: 10.14348/molcells.2021.2239
- Hernandez-Segura A, De Jong TV, Melov S, Guryev V, Campisi J, Demaria M. Unmasking transcriptional heterogeneity in senescent cells. Current Biology. 2017;27(17):2652–2660.e4. doi: 10.1016/j.cub.2017.07.033
- Casella G, Munk R, Kim KM, Piao Y, De S, Abdelmohsen K, Gorospe M. Transcriptome signature of cellular senescence. Nucleic Acids Research. 2019;47(14):7294–7305. doi: 10.1093/nar/gkz555
- Zhou Q, Wan Q, Jiang Y, Liu J, Qiang L, Sun L. A Landscape of Murine Long Non-Coding RNAs Reveals the Leading Transcriptome Alterations in Adipose Tissue during Aging. Cell Reports. 2020;31(8):107694. doi: 10.1016/j.celrep.2020.107694
- Ashapkin VV, Kutueva LI, Vanyushin BF. Aging as an epigenetic phenomenon. Current Genomics. 2017;18(5). doi: 10.2174/1389202918666170412112130
- Biran A, Zada L, Karam PA, Vadai E, Roitman L, Ovadya Y, Porat Z, Krizhanovsky V. Quantitative identification of senescent cells in aging and disease. Aging Cell. 2017;16(4):661–671. doi: 10.1111/acel.12592
- Lafzi A, Moutinho C, Picelli S, Heyn H. Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies. Nature Protocols. 2018;13(12):2742–2757. doi: 10.1038/s41596-018-0073‑y
- Almanzar N, Antony J, Baghel AS. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature. 2020;583(7817):590–595. doi: 10.1038/s41586-020-2496-1
- Kimmel JC, Penland L, Rubinstein ND, Hendrickson DG, Kelley DR, Rosenthal AZ. Murine single-cell RNA-seq reveals cell-identity- and tissue-specific trajectories of aging. Genome Research. 2019;29(12):2088–2103. doi: 10.1101/gr.253880.119
- Enge M, Arda HE, Mignardi M, Beausang J, Bottino R, Kim SK, Quake SR. Single-Cell analysis of human pancreas reveals transcriptional signatures of aging and somatic mutation patterns. Cell. 2017;171(2):321–330.e14. doi: 10.1016/j.cell.2017.09.004
- Hammond TR, Dufort C, Dissing-Olesen L, et al. Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes. Immunity. 2018;50(1):253–271.e6. doi: 10.1016/j.immuni.2018.11.004
- Yi W, Lu Y, Zhong S. A single-cell transcriptome atlas of the aging human and macaque retina. bioRxiv (Cold Spring Harbor Laboratory). July 2020. doi: 10.1101/2020.07.17.207977
- Zheng Y, Liu X, Le W. A human circulating immune cell landscape in aging and COVID‑19. Protein & Cell. 2020;11(10):740–770. doi: 10.1007/s13238-020-00762-2
- De Micheli AJ, Spector JA, Elemento O, Cosgrove BD. A reference single-cell transcriptomic atlas of human skeletal muscle tissue reveals bifurcated muscle stem cell populations. Skeletal Muscle. 2020;10(1). doi: 10.1186/s13395-020-00236-3
- Zou Z, Long X, Zhao Q. A Single-Cell Transcriptomic atlas of Human skin aging. Developmental Cell. 2020;56(3):383–397.e8. doi: 10.1016/j.devcel.2020.11.002
- Reyfman PA, Walter JM, Joshi N. Single-Cell Transcriptomic Analysis of Human Lung Provides Insights into the Pathobiology of Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine. 2018;199(12):1517–1536. doi: 10.1164/rccm.201712-2410oc
- Roy AL, Sierra F, Howcroft K, Singer DS, Sharpless N, Hodes RJ, Wilder EL, Anderson JM. A blueprint for characterizing senescence. Cell. 2020;183(5):1143–1146. doi: 10.1016/j.cell.2020.10.032
- Li Y, Ma C, Liao S. Combined proteomics and single cell RNA-sequencing analysis to identify biomarkers of disease diagnosis and disease exacerbation for systemic lupus erythematosus. Frontiers in Immunology. 2022;13. doi: 10.3389/fimmu.2022.969509
- Wang H, Peng C, Hu G, Chen W, Hu Y, Pi H. Integrated single-cell RNA-seq and bulk RNA-seq identify diagnostic biomarkers for postmenopausal osteoporosis. Current Medicinal Chemistry. 2024;31. doi: 10.2174/0109298673343344240930054414
- Li J, Zhou M, Feng JQ, Hong SM, Yang SY, Zhi LX, Lin WY, Zhu C, Yu YT, Lu LJ. Bulk RNA sequencing with integrated Single-Cell RNA sequencing identifies BCL2A1 as a potential diagnostic and prognostic biomarker for sepsis. Frontiers in Public Health. 2022;10. doi: 10.3389/fpubh.2022.937303
- Yang L, Zhang X, Hou Q, Huang M, Zhang H, Jiang Z, Yue J, Wu S. Single-cell RNA-seq of esophageal squamous cell carcinoma cell line with fractionated irradiation reveals radioresistant gene expression patterns. BMC Genomics. 2019;20(1). doi: 10.1186/s12864-019-5970-0
Дополнительные файлы

