Single cell RNA sequencing: modern approaches and achievements

Capa

Citar

Texto integral

Resumo

Relevance. Single-cell RNA sequencing (scRNA-seq) is a modern approach to studying the diversity and heterogeneity of RNA transcripts in individual cells, as well as to identifying the composition of different cell types and functions in organisms, organs, and tissues. Based on NGS (next-generation sequencing), scRNA-seq provides a vast amount of information at high cellular resolution in various fields, enabling new discoveries in understanding the composition and interaction patterns of individual cell types in humans, animal models, and plants. Despite its rapid development, optimization, and automation worldwide over the past 15 years, scRNA-seq remains relatively new and has only recently been used in Russia. The challenge of mastering and successfully implementing this method is urgent and critical - it is a powerful tool for in-depth analysis and diagnostics, as demonstrated by the results of studies in which it has been used. The aim of the review was to examine the basic principles and steps of scRNA-seq implementation, both in terms of technical implementation and sample preparation as an extension of the classic NGS method, as well as in terms of the complexity and expansion of data processing, and the use of new algorithms and databases. We examined commercially available scRNA-seq technologies and technologies described in scientific literature that have served as prototypes and alternatives. We also examined examples and results of the use of such technologies in various fields of science and medicine, such as oncology, senescence, diagnostics, and clinical trials. Conclusion. Development and successful application of the scRNA-seq method in scientific and clinical practice will become the key to a wide range of future discoveries and successful accurate personalized diagnostics and healthcare.

Sobre autores

Artem Gusev

National Research Center Institute of Immunology of the Federal Medical-Biological Agency

Email: kofiadi@mail.ru
ORCID ID: 0009-0002-5810-098X
Código SPIN: 4385-0589
Moscow, Russian Federation

Petr Chernov

National Research Center Institute of Immunology of the Federal Medical-Biological Agency

Email: kofiadi@mail.ru
ORCID ID: 0009-0005-0642-8723
Moscow, Russian Federation

Nikolai Dmitriev

National Research Center Institute of Immunology of the Federal Medical-Biological Agency

Email: kofiadi@mail.ru
ORCID ID: 0009-0002-8381-8512
Moscow, Russian Federation

Ilya Kofiadi

National Research Center Institute of Immunology of the Federal Medical-Biological Agency

Autor responsável pela correspondência
Email: kofiadi@mail.ru
ORCID ID: 0000-0001-9280-8282
Código SPIN: 5730-0925
Moscow, Russian Federation

Bibliografia

  1. Hatton IA, Galbraith ED, Merleau NSC, Miettinen TP, Smith BM, Shander JA. The human cell count and size distribution. Proceedings of the National Academy of Sciences. 2023;120(39). doi: 10.1073/pnas.2303077120
  2. Pareek CS, Smoczynski R, Tretyn A. Sequencing technologies and genome sequencing. Journal of Applied Genetics. 2011;52(4):413–435. doi: 10.1007/s13353-011-0057‑x
  3. Hu T, Chitnis N, Monos D, Dinh A. Next-generation sequencing technologies: An overview. Human Immunology. 2021;82(11):801–811. doi: 10.1016/j.humimm.2021.02.012
  4. Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. Journal of Molecular Biology. 1975;94(3):441–448. doi: 10.1016/0022–2836 (75) 90213-2
  5. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences. 1977;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463
  6. Thermo Fisher Scientific [Internet]. Ion Torrent Next-Generation Sequencing Instruments [Accessed July 31, 2025]. Available from: https://www.thermofisher.com/ru/ru/home/life-science/sequencing/next-generation-sequencing/ion-torrent-next-generation-sequencing-workflow/ion-torrent-next-generation-sequencing-run-sequence.html
  7. Merriman B, Rothberg JM. Progress in Ion Torrent semiconductor chip based sequencing. Electrophoresis. 2012;33(23):3397–3417. doi: 10.1002/elps.201200424
  8. Illumina [Internet]. Explore Illumina sequencing technology [Accessed July 31, 2025]. Available from: https://www.illumina.com/science/technology/next-generation-sequencing/sequencing-technology.html
  9. Illumina [Internet]. Bringing next-generation sequencing to clinical labs [Accessed July 31, 2025]. Available from: https://www.illumina.com/systems/ivd-instruments.html
  10. BGI/MGI [Internet]. Introduction to MGI sequencing technology [Accessed July 31, 2025]. Available from: https://en.mgi-tech.com/products/resources
  11. BGI/MGI [Internet]. Sequencer Products. Platforms [Accessed July 31, 2025]. Available from: https://en.genomics.cn/en-sequencplatform.html
  12. PacBio [Internet]. Introducing the Sequel System: The Scalable Platform for SMRT Sequencing [Accessed July 31, 2025]. Available from: https://www.pacb.com/blog/introducing-the-sequel-system-the-scalable-platform-for-smrt-sequencing/
  13. PacBio [Internet]. Human genomics solutions [Accessed July 31, 2025]. Available from: https://www.pacb.com/human-genomics/
  14. ONT [Internet]. About [Accessed July 31, 2025]. Available from: https://nanoporetech.com/about
  15. Jain M, Olsen HE, Paten B, Akeson M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biology. 2016;17(1). doi: 10.1186/s13059-016-1103-0
  16. Wang ET, Sandberg R, Luo S, Khrebutkova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456(7221):470–476. doi: 10.1038/nature07509
  17. Cacchiarelli D, Trapnell C, Ziller MJ, et al. Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency. Cell. 2015;162(2):412–424. doi: 10.1016/j.cell.2015.06.016
  18. Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer causation. Nature Reviews Cancer. 2007;7(4):233–245. doi: 10.1038/nrc2091
  19. Trapnell C. Defining cell types and states with single-cell genomics. Genome Research. 2015;25(10):1491–1498. doi: 10.1101/gr.190595.115
  20. Plasschaert LW, Žilionis R, Choo-Wing R, Savova V, Knehr J. Roma G, Klein AM, Jaffe AB. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature. 2018;560(7718):377–381. doi: 10.1038/s41586-018-0394-6
  21. Suo S, Zhu Q, Saadatpour A, Fei L, Guo G, Yuan GC. Revealing the critical regulators of cell identity in the Mouse cell Atlas. Cell Reports. 2018;25(6):1436–1445.e3. doi: 10.1016/j.celrep.2018.10.045
  22. Velasco S, Kedaigle AJ, Simmons SK, et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature. 2019;570(7762):523–527. doi: 10.1038/s41586-019-1289‑x
  23. Fischer DS, Fiedler AK, Kernfeld EM, Genda RMJ, Bastidas-Ponce A, Bakhti M, Lickert H, Hasenauer J, Maehr R, Theis F. Inferring population dynamics from single-cell RNA-sequencing time series data. Nature Biotechnology. 2019;37(4):461–468. doi: 10.1038/s41587-019-0088-0
  24. Liu Z, Wang L, Welch JD, et al. Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte. Nature. 2017;551(7678):100–104. doi: 10.1038/nature24454
  25. Cacchiarelli D, Qiu X, Srivatsan S, et al. Aligning Single-Cell developmental and reprogramming trajectories identifies molecular determinants of myogenic reprogramming outcome. Cell Systems. 2018;7(3):258–268.e3. doi: 10.1016/j.cels.2018.07.006
  26. Van Dijk D, Sharma R, Nainys J, et al. Recovering Gene Interactions from Single-Cell Data Using Data Diffusion. Cell. 2018;174(3):716–729.e27. doi: 10.1016/j.cell.2018.05.061
  27. Hayashi T, Ozaki H, Sasagawa Y, Umeda M, Danno H, Nikaido I. Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs. Nature Communications. 2018;9(1). doi: 10.1038/s41467-018-02866-0
  28. Savas P, Virassamy B, Ye C. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nature Medicine. 2018;24(7):986–993. doi: 10.1038/s41591-018-0078-7
  29. Moghe I, Loupy A, Solez K. The Human Cell Atlas Project by the numbers: Relationship to the Banff Classification. American Journal of Transplantation. 2018;18(7):1830. doi: 10.1111/ajt.14757
  30. Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nature Methods. 2009;6(5):377–382. doi: 10.1038/nmeth.1315
  31. Perik-Zavodskaia OYu, Perik-Zavodskii RYu, Sennikov SV. Innovative approaches in immunology: single cell multi-omics and spatial transcriptomics. Immunologiya. 2024;45(4):414–426. doi: 10.33029/1816-2134-2024-45-4-414-426 (In Russian). [Перик-Заводская О.Ю., Перик-Заводский Р.Ю., Сенников С.В. Инновационные подходы в иммунологии: мультиомика единичных клеток и пространственная транскриптомика // Иммунология. 2024; 45 (4): 414–426 DOI: https://doi.org/10.33029/1816-2134-2024-45-4-414-426]
  32. Hedlund E, Deng Q. Single-cell RNA sequencing: Technical advancements and biological applications. Molecular Aspects of Medicine. 2017;59:36–46. doi: 10.1016/j.mam.2017.07.003
  33. Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Experimental & Molecular Medicine. 2018;50(8):1–14. doi: 10.1038/s12276-018-0071-8
  34. Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaument-Adkins A, Smets M, Leonhards H, Heyn H, Hellmann I, Enard W. Comparative analysis of Single-Cell RNA sequencing Methods. Molecular Cell. 2017;65(4):631–643.e4. doi: 10.1016/j.molcel.2017.01.023
  35. Sanz E, Yang L, Su T, Morris DR, McKnight GS, Amieux PS. Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proceedings of the National Academy of Sciences. 2009;106(33):13939–13944. doi: 10.1073/pnas.0907143106
  36. Zeb Q, Wang C, Shafiq S, Liu L. An overview of Single-Cell isolation techniques. In: Elsevier eBooks.; 2019:101–135. doi: 10.1016/b978-0-12-814919-5.00006-3
  37. Macosko EZ, Basu A, Satija R. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202–1214. doi: 10.1016/j.cell.2015.05.002
  38. Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, Lönnerberg P, Linnarsson S. Quantitative single-cell RNA-seq with unique molecular identifiers. Nature Methods. 2013;11(2):163–166. doi: 10.1038/nmeth.2772
  39. Senabouth A, Andersen S, Shi Q, et al. Comparative performance of the BGI and Illumina sequencing technology for single-cell RNA-sequencing. NAR Genomics and Bioinformatics. 2020;2(2). doi: 10.1093/nargab/lqaa034
  40. Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics. Nature Reviews Genetics. 2015;16(3):133–145. doi: 10.1038/nrg3833
  41. Lähnemann D, Köster J, Szczurek E, et al. Eleven grand challenges in single-cell data science. Genome Biology. 2020;21(1). doi: 10.1186/s13059-020-1926-6
  42. scRNA-tools [Internet]. scRNA-tools page [Accessed July 31, 2025]. Available from: https://www.scrna-tools.org
  43. Luecken MD, Theis FJ. Current best practices in single‐cell RNA‐seq analysis: a tutorial. Molecular Systems Biology. 2019;15(6). doi: 10.15252/msb.20188746
  44. Neu KE, Tang Q, Wilson PC, Khan AA. Single-Cell Genomics: Approaches and utility in Immunology. Trends in Immunology. 2017;38(2):140–149. doi: 10.1016/j.it.2016.12.001
  45. Slovin S, Carissimo A, Panariello F, Grimaldi A, Bouché V, Gambardella G, Cacchiarelli D. Single-Cell RNA sequencing Analysis: A Step-by-Step Overview. Methods in Molecular Biology. January 2021:343–365. doi: 10.1007/978-1-0716-1307-8_19
  46. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature Biotechnology. 2018;36(5):411–420. doi: 10.1038/nbt.4096
  47. Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. Genome Biology. 2018;19(1). doi: 10.1186/s13059-017-1382-0
  48. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nature Biotechnology. 2014;32(4):381–386. doi: 10.1038/nbt.2859
  49. Cao J, Spielmann M, Qiu X. The single-cell transcriptional landscape of mammalian organogenesis. Nature. 2019;566(7745):496–502. doi: 10.1038/s41586-019-0969‑x
  50. Gambardella G, Di Bernardo D. A tool for visualization and analysis of Single-Cell RNA-Seq data based on text mining. Frontiers in Genetics. 2019;10. doi: 10.3389/fgene.2019.00734
  51. Github [Internet]. scRNA-seq chapter [Accessed July 31, 2025]. Available from: https://github.com/gambalab/scRNAseq_chapter
  52. Goetz JJ, Trimarchi JM. Transcriptome sequencing of single cells with Smart-Seq. Nature Biotechnology. 2012;30(8):763–765. doi: 10.1038/nbt.2325
  53. Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nature Methods. 2013;10(11):1096–1098. doi: 10.1038/nmeth.2639
  54. Sheng K, Cao W, Niu Y, Deng Q, Zong C. Effective detection of variation in single-cell transcriptomes using MATQ-seq. Nature Methods. 2017;14(3):267–270. doi: 10.1038/nmeth.4145
  55. Hashimshony T, Wagner F, Sher N, Yanai I. CEL-SEQ: Single-Cell RNA-SeQ by multiplexed linear amplification. Cell Reports. 2012;2(3):666–673. doi: 10.1016/j.celrep.2012.08.003
  56. Jaitin DA, Kenigsberg E, Keren-Shaul H. Massively Parallel Single-Cell RNA-Seq for Marker-Free Decomposition of Tissues into Cell Types. Science. 2014;343(6172):776–779. doi: 10.1126/science.1247651
  57. Xin Y, Kim J, Ni M, et al. Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells. Proceedings of the National Academy of Sciences. 2016;113(12):3293–3298. doi: 10.1073/pnas.1602306113
  58. Gierahn TM, Wadsworth MH, Hughes TK, Bryson BD, Butler A, Satija R, Fortune S, Love JC, Shalek AK. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nature Methods. 2017;14(4):395–398. doi: 10.1038/nmeth.4179
  59. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW. Droplet barcoding for Single-Cell transcriptomics applied to embryonic stem cells. Cell. 2015;161(5):1187–1201. doi: 10.1016/j.cell.2015.04.044
  60. Zheng GXY, Terry JM, Belgrader P. Massively parallel digital transcriptional profiling of single cells. Nature Communications. 2017;8(1). doi: 10.1038/ncomms14049
  61. Liu C, Wu T, Fan F, et al. A portable and cost-effective microfluidic system for massively parallel single-cell transcriptome profiling. bioRxiv (Cold Spring Harbor Laboratory). October 2019. doi: 10.1101/818450
  62. Takara Bio [Internet]. SMART-Seq mRNA Single Cell LP and SMART-Seq mRNA Single Cell [Accessed July 31, 2025]. Available from: https://www.takarabio.com/products/next-generation-sequencing/rna-seq/mrna-seq/full-length-mrna-seq/smart-seq-mrna-single-cell-lp-and-smart-seq-mrna-single-cell
  63. BD Bioscience [Internet]. BD Rhapsody [Accessed July 31, 2025]. Available from: https://www.bdbiosciences.com/en-us/products/instruments/single-cell-multiomics-systems/rhapsody
  64. Scale Bioscience [Internet]. QuantumScale Single Cell RNA [Accessed July 31, 2025]. Available from: https://scale.bio/single-cell-rna-sequencing-kit/
  65. Singleron [Internet]. Single Cell RNA Sequencing [Accessed July 31, 2025]. Available from: https://singleron.bio/single-cell-sequencing-solutions/
  66. X Genomics [Internet]. Chromium Single Cell [Accessed July 31, 2025]. Available from: https://www.10xgenomics.com/platforms/chromium
  67. BGI/MGI [Internet]. Single Cell RNA-Seq [Accessed July 31, 2025]. Available from: https://www.bgi.com/us/high-throughput-single-cell-rna-seq
  68. BIO-RAD [Internet]. ddSEQ Single-Cell 3’ RNA-Seq & Omnition Analysis Software [Accessed July 31, 2025]. Available from: https://www.bio-rad.com/ru-ru/product/ddseq-single-cell‑3‑rna-seq-kit-omnition-analysis-software? ID=b4738e36–858d-e6a0–61d9–8d96d3d521b8
  69. Gao C, Zhang M, Chen L. The comparison of two single-cell sequencing platforms: BD Rhapsody and 10X Genomics Chromium. Current Genomics. 2020;21(8):602–609. doi: 10.2174/1389202921999200625220812
  70. Lei Y, Tang R, Xu J, Wang W, Zhang B, Liu J, Yu X, Shi S. Applications of single-cell sequencing in cancer research: progress and perspectives. Journal of Hematology & Oncology. 2021;14(1). doi: 10.1186/s13045-021-01105-2
  71. Wu J, Xiao Y, Sun J. A single-cell survey of cellular hierarchy in acute myeloid leukemia. Journal of Hematology & Oncology. 2020;13(1). doi: 10.1186/s13045-020-00941‑y
  72. Rozenblatt-Rosen O, Regev A, Oberdoerffer P, et al. The Human Tumor Atlas Network: Charting Tumor Transitions across Space and Time at Single-Cell Resolution. Cell. 2020;181(2):236–249. doi: 10.1016/j.cell.2020.03.053
  73. Chen Z, Zhou L, Liu L, Hou Y, Xiong M, Yang Y, Hu J, Chen K. Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nature Communications. 2020;11(1). doi: 10.1038/s41467-020-18916-5
  74. Sinjab A, Han G, Treekitkarnmongkol W. Resolving the spatial and cellular architecture of lung adenocarcinoma by multiregion Single-Cell sequencing. Cancer Discovery. 2021;11(10):2506–2523. doi: 10.1158/2159-8290.cd‑20-1285
  75. Pal B, Chen Y, Vaillant F. A single‐cell RNA expression atlas of normal, preneoplastic and tumorigenic states in the human breast. The EMBO Journal. 2021;40(11). doi: 10.15252/embj.2020107333
  76. Wagner J, Rapsomaniki MA, Chevrier S. A Single-Cell atlas of the tumor and immune ecosystem of human breast cancer. Cell. 2019;177(5):1330–1345.e18. doi: 10.1016/j.cell.2019.03.005
  77. Hu Q, Hong Y, Qi P, et al. Atlas of breast cancer infiltrated B-lymphocytes revealed by paired single-cell RNA-sequencing and antigen receptor profiling. Nature Communications. 2021;12(1). doi: 10.1038/s41467-021-22300-2
  78. Mathewson ND, Ashenberg O, Tirosh I. Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis. Cell. 2021;184(5):1281–1298.e26. doi: 10.1016/j.cell.2021.01.022
  79. Zheng Y, Chen Z, Han Y, et al. Immune suppressive landscape in the human esophageal squamous cell carcinoma microenvironment. Nature Communications. 2020;11(1). doi: 10.1038/s41467-020-20019-0
  80. Yuan H, Yan M, Zhang G. CancerSEA: a cancer single-cell state atlas. Nucleic Acids Research. 2018;47(D1): D900-D908. doi: 10.1093/nar/gky939
  81. Pritykin Y, Van Der Veeken J, Pine AR, Zhong Y, Sahin M, Mazutis L, Pe’er D, Rudensky AY, Leslie CS. A unified atlas of CD8 T cell dysfunctional states in cancer and infection. Molecular Cell. 2021;81(11):2477–2493.e10. doi: 10.1016/j.molcel.2021.03.045
  82. Cheng S, Li Z, Gao R. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell. 2021;184(3):792–809.e23. doi: 10.1016/j.cell.2021.01.010
  83. Marcu A, Bichmann L, Kuchenbecker L, et al. HLA Ligand Atlas: a benign reference of HLA-presented peptides to improve T-cell-based cancer immunotherapy. Journal for ImmunoTherapy of Cancer. 2021;9(4): e002071. doi: 10.1136/jitc‑2020–002071
  84. Buechler MB, Pradhan RN, Krishnamurty AT. Cross-tissue organization of the fibroblast lineage. Nature. 2021;593(7860):575–579. doi: 10.1038/s41586-021-03549-5
  85. Liudahl SM, Betts CB, Sivagnanam S, et al. Leukocyte Heterogeneity in Pancreatic Ductal Adenocarcinoma: Phenotypic and Spatial Features Associated with Clinical Outcome. Cancer Discovery. 2021;11(8):2014–2031. doi: 10.1158/2159-8290.cd‑20-0841
  86. Coons AH, Creech HJ, Jones RN. Immunological properties of an antibody containing a fluorescent group. Experimental Biology and Medicine. 1941;47(2):200–202. doi: 10.3181/00379727-47-13084p
  87. Gall JG, Pardue ML. Formation and detection of rna-dna hybrid molecules in cytological preparations. Proceedings of the National Academy of Sciences. 1969;63(2):378–383. doi: 10.1073/pnas.63.2.378
  88. Geng S, Wang J, Zhang X, et al. Single-cell RNA sequencing reveals chemokine self-feeding of myeloma cells promotes extramedullary metastasis. FEBS Letters. 2019;594(3):452–465. doi: 10.1002/1873-3468.13623
  89. Jackson HW, Fischer JR, Zanotelli VRT, et al. The single-cell pathology landscape of breast cancer. Nature. 2020;578(7796):615–620. doi: 10.1038/s41586-019-1876‑x
  90. Moncada R, Barkley D, Wagner F, Chiodin M, Devlin JC, Baron M, Hajdu CH, Simeone DM, Yanai I. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nature Biotechnology. 2020;38(3):333–342. doi: 10.1038/s41587-019-0392-8
  91. Ståhl PL, Salmén F, Vickovic S. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016;353(6294):78–82. doi: 10.1126/science.aaf2403
  92. Li J, Wang R, Zhou X, et al. Genomic and transcriptomic profiling of carcinogenesis in patients with familial adenomatous polyposis. Gut. 2019;69(7):1283–1293. doi: 10.1136/gutjnl‑2019-319438
  93. Praktiknjo SD, Obermayer B, Zhu Q, Fang L, Liu H, Quinn H, Stoeckius M, Kocks C, Birchmeier W, Rajewsky N. Tracing tumorigenesis in a solid tumor model at single-cell resolution. Nature Communications. 2020;11(1). doi: 10.1038/s41467-020-14777-0
  94. Chen YC, Sahoo S, Brien R. Single-cell RNA-sequencing of migratory breast cancer cells: discovering genes associated with cancer metastasis. The Analyst. 2019;144(24):7296–7309. doi: 10.1039/c9an01358j
  95. Wouters J, Kalender-Atak Z, Minnoye L. Robust gene expression programs underlie recurrent cell states and phenotype switching in melanoma. Nature Cell Biology. 2020;22(8):986–998. doi: 10.1038/s41556-020-0547-3
  96. Cook DP, Vanderhyden BC. Ovarian cancer and the evolution of subtype classifications using transcriptional profiling†. Biology of Reproduction. 2019;101(3):645–658. doi: 10.1093/biolre/ioz099
  97. Liu Y, Ye G, Huang L, Zhang C, Sheng Y, Wu B, Han L, Wu C, Dong B, Qi Y. Single-cell transcriptome analysis demonstrates inter-patient and intra-tumor heterogeneity in primary and metastatic lung adenocarcinoma. Aging. 2020;12(21):21559–21581. doi: 10.18632/aging.103945
  98. Zhang M, Hu S, Min M, Ni Y, Lu Z, Sun X, Wu J, Liu B, Ying X, Liu Y. Dissecting transcriptional heterogeneity in primary gastric adenocarcinoma by single cell RNA sequencing. Gut. 2020;70(3):464–475. doi: 10.1136/gutjnl‑2019-320368
  99. Peng J, Sun BF, Chen CY, et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Research. 2019;29(9):725–738. doi: 10.1038/s41422-019-0195‑y
  100. Kim N, Kim HK, Lee K. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nature Communications. 2020;11(1). doi: 10.1038/s41467-020-16164-1
  101. Kim S, Kim C. Transcriptomic Analysis of Cellular Senescence: One Step Closer to Senescence Atlas. Molecules and Cells. 2021;44(3):136–145. doi: 10.14348/molcells.2021.2239
  102. Hernandez-Segura A, De Jong TV, Melov S, Guryev V, Campisi J, Demaria M. Unmasking transcriptional heterogeneity in senescent cells. Current Biology. 2017;27(17):2652–2660.e4. doi: 10.1016/j.cub.2017.07.033
  103. Casella G, Munk R, Kim KM, Piao Y, De S, Abdelmohsen K, Gorospe M. Transcriptome signature of cellular senescence. Nucleic Acids Research. 2019;47(14):7294–7305. doi: 10.1093/nar/gkz555
  104. Zhou Q, Wan Q, Jiang Y, Liu J, Qiang L, Sun L. A Landscape of Murine Long Non-Coding RNAs Reveals the Leading Transcriptome Alterations in Adipose Tissue during Aging. Cell Reports. 2020;31(8):107694. doi: 10.1016/j.celrep.2020.107694
  105. Ashapkin VV, Kutueva LI, Vanyushin BF. Aging as an epigenetic phenomenon. Current Genomics. 2017;18(5). doi: 10.2174/1389202918666170412112130
  106. Biran A, Zada L, Karam PA, Vadai E, Roitman L, Ovadya Y, Porat Z, Krizhanovsky V. Quantitative identification of senescent cells in aging and disease. Aging Cell. 2017;16(4):661–671. doi: 10.1111/acel.12592
  107. Lafzi A, Moutinho C, Picelli S, Heyn H. Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies. Nature Protocols. 2018;13(12):2742–2757. doi: 10.1038/s41596-018-0073‑y
  108. Almanzar N, Antony J, Baghel AS. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature. 2020;583(7817):590–595. doi: 10.1038/s41586-020-2496-1
  109. Kimmel JC, Penland L, Rubinstein ND, Hendrickson DG, Kelley DR, Rosenthal AZ. Murine single-cell RNA-seq reveals cell-identity- and tissue-specific trajectories of aging. Genome Research. 2019;29(12):2088–2103. doi: 10.1101/gr.253880.119
  110. Enge M, Arda HE, Mignardi M, Beausang J, Bottino R, Kim SK, Quake SR. Single-Cell analysis of human pancreas reveals transcriptional signatures of aging and somatic mutation patterns. Cell. 2017;171(2):321–330.e14. doi: 10.1016/j.cell.2017.09.004
  111. Hammond TR, Dufort C, Dissing-Olesen L, et al. Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes. Immunity. 2018;50(1):253–271.e6. doi: 10.1016/j.immuni.2018.11.004
  112. Yi W, Lu Y, Zhong S. A single-cell transcriptome atlas of the aging human and macaque retina. bioRxiv (Cold Spring Harbor Laboratory). July 2020. doi: 10.1101/2020.07.17.207977
  113. Zheng Y, Liu X, Le W. A human circulating immune cell landscape in aging and COVID‑19. Protein & Cell. 2020;11(10):740–770. doi: 10.1007/s13238-020-00762-2
  114. De Micheli AJ, Spector JA, Elemento O, Cosgrove BD. A reference single-cell transcriptomic atlas of human skeletal muscle tissue reveals bifurcated muscle stem cell populations. Skeletal Muscle. 2020;10(1). doi: 10.1186/s13395-020-00236-3
  115. Zou Z, Long X, Zhao Q. A Single-Cell Transcriptomic atlas of Human skin aging. Developmental Cell. 2020;56(3):383–397.e8. doi: 10.1016/j.devcel.2020.11.002
  116. Reyfman PA, Walter JM, Joshi N. Single-Cell Transcriptomic Analysis of Human Lung Provides Insights into the Pathobiology of Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine. 2018;199(12):1517–1536. doi: 10.1164/rccm.201712-2410oc
  117. Roy AL, Sierra F, Howcroft K, Singer DS, Sharpless N, Hodes RJ, Wilder EL, Anderson JM. A blueprint for characterizing senescence. Cell. 2020;183(5):1143–1146. doi: 10.1016/j.cell.2020.10.032
  118. Li Y, Ma C, Liao S. Combined proteomics and single cell RNA-sequencing analysis to identify biomarkers of disease diagnosis and disease exacerbation for systemic lupus erythematosus. Frontiers in Immunology. 2022;13. doi: 10.3389/fimmu.2022.969509
  119. Wang H, Peng C, Hu G, Chen W, Hu Y, Pi H. Integrated single-cell RNA-seq and bulk RNA-seq identify diagnostic biomarkers for postmenopausal osteoporosis. Current Medicinal Chemistry. 2024;31. doi: 10.2174/0109298673343344240930054414
  120. Li J, Zhou M, Feng JQ, Hong SM, Yang SY, Zhi LX, Lin WY, Zhu C, Yu YT, Lu LJ. Bulk RNA sequencing with integrated Single-Cell RNA sequencing identifies BCL2A1 as a potential diagnostic and prognostic biomarker for sepsis. Frontiers in Public Health. 2022;10. doi: 10.3389/fpubh.2022.937303
  121. Yang L, Zhang X, Hou Q, Huang M, Zhang H, Jiang Z, Yue J, Wu S. Single-cell RNA-seq of esophageal squamous cell carcinoma cell line with fractionated irradiation reveals radioresistant gene expression patterns. BMC Genomics. 2019;20(1). doi: 10.1186/s12864-019-5970-0

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».