Efficient control of the direction of thrust during highspeed maneuver in the plane

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The controlled motion of an inertial object during a high-speed maneuver in a vertical plane is investigated. The generated thrust is limited in magnitude, the control is the angle that sets its direction, the initial velocity is generally non-zero, and external forces are not considered. The goal is to maximize the horizontal velocity projection at a given final moment of time with the simultaneous fulfillment of two terminal conditions: bringing the object to a given height and damping the vertical velocity projection. Similar tasks often arise when controlling mechanical objects with modulo-limited thrust. The research is relevant, as it is aimed at ensuring both the efficiency of the desired algorithm and the simplicity of its calculation and implementation. In this case, the methods of the mathematical theory of optimal control are used. As a result, a solvability condition for the problem posed is obtained, which is related to the minimum possible time of motion in the dual timeoptimal control problem. In the law of optimal control, based on the so-called law of fractional linear tangent, an analytical relationship between two integration constants is found, which makes it possible to reduce the procedure for determining these constants to the numerical solution of only one transcendental equation. An appropriate comparative analysis of the trajectories was carried out and conclusions were drawn that one of the proposed suboptimal strategies is more effective.

Авторлар туралы

Sergey Reshmin

Ishlinsky Institute for Problems in Mechanics RAS

Email: reshmin@ipmnet.ru
ORCID iD: 0000-0003-4817-159X

Dr. Phys.-Math. Sci., Corresponding Member of RAS

Moscow, Russian Federation

Madina Bektybaeva

Ishlinsky Institute for Problems in Mechanics RAS; RUDN University

Хат алмасуға жауапты Автор.
Email: madi8991@mail.ru
ORCID iD: 0000-0002-8875-4610

Engineer, Laboratory of Mechanics of Systems, Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences ; PhD student of the Department of Mechanics and Control Processes, RUDN University

Moscow, Russian Federation

Әдебиет тізімі

  1. Pontryagin LS, Boltyansky VG, Gamkrelidze RV, Mishchenko EF. Mathematical theory of optimal processes. New York: Gordon and Breach; 1986.
  2. Roitenberg YaN. Automatic control. Moscow: Nauka Publ.; 1971:396. (In Russ.)
  3. Bryson AE, Ho Y-C. Applied optimal control: optimization, estimation, and control. Waltham, Mass.: Blaisdell Pub. Co; 1969.
  4. Afanasyev VN, Kolmanovsky VB, Nosov VR. Mathematical theory of control system design. Moscow: Vysshaya shkola Publ.; 2003. (In Russ.)
  5. Isaev VK. L.S. Pontryagins’s maximum principle and optimal programming of rocket thrust. Automation and Remote Control. 1961;22(8):881–893. (In Russ.)
  6. Rose MB, Geller D. Linear covariance techniques for powered ascent. AIAA guidance, navigation, and control conference. 2–5 August, Toronto, Ontario, Canada. 2010:8175. https://doi.org/10.2514/6.2010-8175
  7. Markl AW. An initial guess generator for launch and reentry vehicle trajectory optimization. PhD thesis, Institut für Flugmechanik und Flugregelung der Universität Stuttgart, Germany; 2001. http://doi.org/10.18419/opus3655
  8. Boelitz FW. Guidance, steering, load relief and control of an asymmetric launch vehicle. Report №. NAS 1.26:185598;1989.
  9. Brusch R. Bilinear tangent yaw guidance. Guidance and Control Conference. 06 August, Boulder, CO, U.S.A. 1979. https://doi.org/10.2514/6.1979–1730
  10. Gordan AL. Centaur D-1A guidance/software system. Ann. Rocky Mountain Guidance and Control Conf. Report № NASA-TM-83552. Keystone, Colorado; 1983.
  11. Perkins FM. Derivation of linear-tangent steering laws. Aerospace Corporation, El Segundo, California; TR-1001 (99990)-1, Nov. 1966. https://doi.org/10.21236/ad0643209
  12. Riatti P. Optimal control and near-optimal guidance for the ascent of ARIANE 5. Master’s Thesis, IFR. University of Stuttgart; 1997.
  13. Townsend GE, Abbott AS, Palmer RR. Guidance, flight mechanics and trajectory optimization. National Aeronautics and Space Administration. Boost Guidance Equations. 1968;7–23.
  14. Bektybaeva MT, Reshmin SA. Methods for solving problems of optimal control of mechanical systems with a restriction on the modulus of the control force. Modern European Researches. 2023;1(1):38–44. (In Russ.)
  15. Rosenblat GM. Mechanics in problems and solutions. Moscow: Editorial URSS; 2004.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».