Thermal deformation of a long elastic strip

Capa

Citar

Texto integral

Resumo

A general method is proposed for the formulation and solution of temperature problems of the theory of elasticity for thin-walled bodies for a given temperature distribution with the preservation of the order of differential equations and the fulfilment of all boundary conditions. The elasticity relations, taking into account temperature deformations, are transformed to a form that allows, in accordance with the Saint-Venant-Picard-Banach method, to perform iterative calculation of all the looking for unknowns of the problem. The procedure for constructing a solution is reduced to replacing four differential equations of the first order of the original system of elasticity theory with four corresponding integral Picard equations with a small factor of relative thinness. Seven unknowns of the original problem calculated by direct integration are expressed in terms of four basic unknowns. The fulfilment of the boundary conditions on the long sides of the strip leads to the solution of four ordinary differential equations for slowly varying and rapidly changing components of the main unknowns. Slowly changing components describe the classical stress-strain state. The rapidly changing ones determine the edge effects at the points of discontinuity of the slowly changing classical solution and the fulfilment of the unsatisfied boundary conditions due to the lowering of the order of the differential equations based on the Kirchhoff hypothesis. In the general case, the solution is represented in the form of asymptotic series in the small parameter of thinness with coefficients in the form of power series in the transverse coordinate. The presentation is illustrated by examples of warping of a free strip and of the occurrence of stresses and displacements of only the edge effect in a strip rigidly clamped at the ends with a linear temperature distribution along the height.

Sobre autores

Evgeny Zveryaev

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences; Peoples’ Friendship University of Russia (RUDN University); Moscow Aviation Institute (National Research University)

Autor responsável pela correspondência
Email: zveriaev@mail.ru
ORCID ID: 0000-0001-8097-6684

Doctor of Technical Sciences, Professor, leading researcher at the Keldysh Institute of Applied Mathematics; Professor of the Department of Construction, Academy of Engineering, Peoples’ Friendship University of Russia (RUDN University); Professor of the Department of Design of Complex Mechanical Systems, Moscow Aviation Institute

4 Miusskaya Ploshchad’, Moscow, 125047, Russian Federation; 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation; 4 Volokolamskoe Shosse, Moscow, 125993, Russian Federation

Bibliografia

  1. Love AEH. A treatise on the mathematical theory of elasticity. Cambridge: Cambridge University Press; 1927.
  2. Friedrichs KO. Asymptotic phenomena in mathematical physics. Bull. Amer. Math. Soc. 1955;61(6):485–504.
  3. Vasiliev VV. On the theory of thin plates. Izvestiya RAN. Mekhanika Tverdogo Tela. 1992;(3):26–47. (In Russ.)
  4. Vasilev VV. Kirchhoff and Thomson – Tait transformations in the classical theory of plates. Mechanics of Solids. 2012;47:571–579. https://doi.org/10.3103/S0025654412050111
  5. Vasilev VV. Torsion of a square isotropic plate by forces applied at the corners and by distributed torques. Mechanics of Solids. 2017;52:134–143. https://doi.org/10.3103/S0025654417020030
  6. Grigolyuk EI, Selezov IT. Non-classical theory of oscillations of rods, plates and shells. Results of Science and Technology. Mechanics of Solid Deformable Bodies (vol. 5). Moscow: VINITI Publ.; 1973. (In Russ.)
  7. Zveryaev EM. Saint-Venant – Picard – Banach method of integration of equations of the theory of elasticity of thin-walled systems. Prikladnaya Matematika i Mekhanika. 2019;83(5–6):823–833. (In Russ.)
  8. Zveryaev EM. Interpretation of semi-invers Saint-Venant method as iteration asymptotic method. In: Pietraszkiewicz W, Szymczak C. (eds.) Shell Structures: Theory and Application. London: Taylor & Francis Group; 2006. p. 191–198.
  9. Zveryayev EM. A consistent theory of thin elastic shells. Journal of Applied Mathematics and Mechanics. 2016;80(5):409–420. https://doi.org/10.1016/j.jappmathmech.2017.02.008
  10. Zveryayev EM, Makarov GI. A general method for constructing Timoshenko-type theories. Journal of Applied Mathematics and Mechanics. 2008;72(2):197–207. https://doi.org/10.1016/j.jappmathmech.2008.04.004
  11. Zveryaev EM, Olekhova LV. Reduction 3D equations of composite plate to 2D equations on base of mapping contraction principle. Keldysh Institute Preprints (issue 95). Moscow; 2014. (In Russ.) Available from: http://keldysh.ru/papers/2014/prep2014_95.pdf (accessed: 02.14.2021).
  12. Zveryayev EM. Analysis of the hypotheses used when constructing the theory of beam and plates. Journal of Applied Mathematics and Mechanics. 2003;67(3):425–434.
  13. Lebedev NN. Temperature stresses in the theory of elasticity. Moscow, Leningrad: ONTI. Glavnaya redaktsiya tekhniko-teoreticheskoi literatury Publ.; 1937. (In Russ.)
  14. Zveryaev EM, Olekhova LV. Iterative interpretation of the semi-inverse Saint-Venant method when constructing equations for thin-walled structural elements made of composite material. Trudy MAI. 2015;(79):1‒27. (In Russ.)

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».