Информативность данных инфракрасного диапазона съемки для детектирования свойств пахотных почв


Цитировать

Полный текст

Аннотация

Приведены результаты анализа возможности детектирования параметров почвенного плодородия на основе использования данных тепловой съемки на примере тестового участка в Ясногорском районе Тульской области. На тестовом участке представлены серые лесные слабоэродированные пахотные почвы, расположенные в плоской части склона. Во время полевых работ проводилась съемка открытой поверхности почв с использованием т епловизора FLIR VUE 512 (диапазон 7,5-13,5 мкм), также из слоя 0-5 см производился отбор почвенных образцов и измерение влажности почвы в слое 15-20 см. Практически для всех параметров почвенного плодородия (pH, содержание гумуса, содержание калия, обменные катионы - Mg++, K+, Na+) была установлена статистически значимая корреляция (r =0,4-0,7), между ними и данными съемки в тепловом диапазоне спектра. Для умеренных корреляций были составлены уравнения полиноминальной регрессии. Из исследуемых параметров плодородия значимый коэффициент детерминации (R2 > 0,60) с тепловым диапазоном спектра имели pH сол. (R2 = 0,61), содержание оксида калия (R2 = 0,60) и обменных катионов калия (R2 = 0,63). Полученные результаты показали, что использование съемки в тепловом диапазоне может применяться для картографирования некоторых параметров почвенного плодородия региона исследования. Для тестового поля оказалось невозможным на основе данных тепловой съемки надежно отдетектировать все основные параметры плодородия почв поля. Однако данные тепловой почвенной съемки можно использовать как вспомогательные при съемке в видимом и ближнем ИК диапазонах, что поможет повысить точность бесконтактного почвенного мониторинга.

Об авторах

Прасковья Георгиевна Грубина

ФИЦ «Почвенный институт им. В.В. Докучаева»

Автор, ответственный за переписку.
Email: grubina_pg@esoil.ru
ORCID iD: 0000-0001-6325-4604
SPIN-код: 8805-9813

младший научный сотрудник

119017, Российская Федерация, г. Москва, Пыжевский пер. 7, стр. 2

Игорь Юрьевич Савин

ФИЦ «Почвенный институт им. В.В. Докучаева»; Российский университет дружбы народов

Email: savin_iyu@esoil.ru
ORCID iD: 0000-0002-8739-5441
SPIN-код: 5132-0631

доктор сельскохозяйственных наук, академик РАН, профессор Института экологии, Российский университет дружбы народов; главный научный сотрудник, ФИЦ «Почвенный институт имени В.В. Докучаева»

119017, Российская Федерация, г. Москва, Пыжевский пер. 7, стр. 2; Российская Федерация, 117198, г. Москва, ул. МиклухоМаклая, д. 6

Список литературы

  1. Savin IY, Simakova MS. Sputnikovye tekhnologii dlya inventarizatsii i monitoringa pochv v Rossii [Satellite technologies for soil inventory and monitoring in Russia]. Current problems in remote sensing of the Earth from space. 2012;9(5):104-115. (In Russ.).
  2. Gomez C, Rossel RAV, McBratney AB. Soil organic carbon prediction by hyperspectral remote sensing and field visNIR spectroscopy: An Australian case study. Geoderma. 2008;146(3-4):403-411. doi: 10.1016/j. geoderma.2008.06.011
  3. Khayamim F, Wetterlind J, Khademi H, Robertson J, Cano AF, Stenberg B. Using visible and near infrared spectroscopy to estimate carbonates and gypsum in soils in arid and subhumid regions of Isfahan, Iran. Journal of Near Infrared Spectroscopy. 2015;23(3):155-165. doi: 10.1255/jnirs.1157
  4. Demattê JAM, RamirezLopez L, Marques KP, Rodella AA. Chemometric soil analysis on the determination of specific bands for the detection of magnesium and potassium by spectroscopy. Geoderma. 2017;288:8-22. doi: 10.1016/j.geoderma.2016.11.013
  5. Shao Y, He Y. Nitrogen, phosphorus, and potassium prediction in soils, using infrared spectroscopy. Soil Research. 2011;49(2):166-172. doi: 10.1071/SR10098
  6. Rossel RAV, Walvoort DJJ, McBratney AB, Janik LJ, Skjemstad JO. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma. 2006;131(1-2):59-75. doi: 10.1016/j.geoderma.2005.03.007
  7. SorianoDisla JM, Janik LJ, Rossel RAV, Macdonald LM, McLaughlin MJ. The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties. Applied spectroscopy reviews. 2014;49(2):139-186. doi: 10.1080/05704928.2013.811081
  8. Savin, IY, Vindeker GV. Some specifics in using optical properties of soil surface for moisture detection. Eurasian Soil Science. 2021;54(7):1019-1027. (In Russ.). doi: 10.31857/S0032180X21070121
  9. Han L, Wang C, Liu Q, Wang G, Yu T, Gu X, et al. Soil moisture mapping based on multi-source fusion of optical, near-infrared, thermal infrared, and digital elevation model data via the Bayesian maximum entropy framework. Remote Sensing. 2020;12(23):3916. doi: 10.3390/rs12233916
  10. Mira M, Valor E, Caselles V, Rubio E, Coll C, Galve JM, et al. Soil moisture effect on thermal infrared (8-13-μm) emissivity. IEEE Transactions on Geoscience and Remote Sensing. 2010;48(5):2251-2260. doi: 10.1109/TGRS.2009.2039143
  11. Sanchez JM, French AN, Mira M, Hunsaker DJ, Thorp KR, Valor E, et al. Thermal infrared emissivity dependence on soil moisture in field conditions. IEEE transactions on geoscience and remote sensing. 2011;49(11):4652-4659. doi: 10.1071/SR10098
  12. Ivannikov DI, Chekin VV, Melnik MS, Fedoseeva EV, Sivokon YV. Monitoring of agricultural land with using remote sensing technology. Young Science. 2014;1(2):52-55. (In Russ.).
  13. Liu Q, Yan C, Xiao Q, Yan G, Fang L. Separating vegetation and soil temperature using airborne multiangular remote sensing image data. International Journal of Applied Earth Observation and Geoinformation. 2012;17:66- 75. doi: 10.1016/j.jag.2011.10.003
  14. Xu L, Wang Z, Hu J, Wang S, Nyongesah M. Estimation of soil salinity under various soil moisture conditions using laboratory based thermal infrared spectra. Journal of the Indian Society of Remote Sensing. 2021;49:959-969. doi: 10.1007/s12524-020-01271-9
  15. Silvero NEQ, Di Raimo LADL, Pereira GS, de Magalhães LP, da Silva Terra F, Dassan MAA, et al. Effects of water, organic matter, and iron forms in midIR spectra of soils: Assessments from laboratory to satellite-simulated data. Geoderma. 2020;375:114480. doi: 10.1016/j.geoderma.2020.114480
  16. Eisele A, Lau I, Hewson R, Carter D, Wheaton B, Ong C, et al. Applicability of the thermal infrared spectral region for the prediction of soil properties across semi-arid agricultural landscapes. Remote Sensing. 2012;4(11):3265-3286. doi: 10.3390/rs4113265
  17. Ivushkin K, Bartholomeus H, Bregt AK, Pulatov A, Kempen B, de Sousa L. Global mapping of soil salinity change. Remote Sensing of Environment. 2019;231:111260. doi: 10.1016/j.rse.2019.111260
  18. Xu C, Qu J, Hao X, Zhu Z, Gutenberg L. Surface soil temperature seasonal variation estimation in a forested area using combined satellite observations and in-situ measurements. International Journal of Applied Earth Observation and Geoinformation. 2020;91:102156. doi: 10.1016/j.jag.2020.102156
  19. Zhang Y, Shen H, Gao Q, Zhao L. Estimating soil organic carbon and pH in Jilin Province using Landsat and ancillary data. Soil Science Society of America Journal. 2020;84(2):556-567. doi: 10.1002/saj2.20056
  20. Sorokina NP. Struktura pochvennogo pokrova pakhotnykh zemel’: tipizatsiya, kartografirovanie, agroekologicheskaya otsenka [Structure of soil cover of arable land: Typification, mapping, agroecological assessment]. Moscow; 2003. (In Russ.).
  21. Interstate Council for Standardization, Methology and Certification. GOST 26107-84. Pochvy. Metody opredelenija obshhego azota [Soils. Methods for determining total nitrogen]. Moscow; 1984. (In Russ.).
  22. Kireev IM, Koval ZM. Metod i sredstvo dlya ekspress-otsenki vlazhnosti pochvy [Method and tool for rapid assessment of soil moisture]. AgroForum. 2019;(5):20-23. (In Russ.).
  23. Palombo A, Pascucci S, Loperte A, Lettino A, Castaldi F, Muolo MR, et al. Soil moisture retrieval by integrating TASI-600 airborne thermal data, WorldView 2 satellite data and field measurements: Petacciato case study. Sensors. 2019;19(7):1515. doi: 10.3390/s19071515
  24. Hassan AM, Belal AA, Hassan MA, Farag FM, Mohamed ES. Potential of thermal remote sensing techniques in monitoring waterlogged area based on surface soil moisture retrieval. Journal of African Earth Sciences. 2019;155:64-74. doi: 10.1016/j.jafrearsci.2019.04.005
  25. Grubina PG, Savin IY, Prudnikova EY. The possibilities of using thermal infrared imaging data for detecting the main parameters of arable soil fertility. Dokuchaev Soil Bulletin. 2020;(105):146-172. (In Russ.). doi: 10.19047/0136-1694-2020-105-146-172
  26. Pascucci S, Casa R, Belviso C, Palombo A, Pignatti S, Castaldi F. Estimation of soil organic carbon from airborne hyperspectral thermal infrared data: a case study. European Journal of Soil Science. 2014;65(6):865-875. doi: 10.1111/ejss.12203
  27. Eisele A, Chabrillat S, Hecker C, Hewson R, Lau IC, Rogass C, et al. Advantages using the thermal infrared (TIR) to detect and quantify semi-arid soil properties. Remote Sensing of Environment. 2015;163:296-311. doi: 10.1016/j.rse.2015.04.001
  28. Ait Hssaine B, Chehbouni A, ErRaki S, Khabba S, Ezzahar J, Ouaadi N, et al. On the Utility of HighResolution Soil Moisture Data for Better Constraining Thermal-B ased Energy Balance over Three Semi-Arid Agricultural Areas. Remote Sensing. 2021;13(4):727. doi: 10.3390/rs13040727
  29. Yuan L, Li L, Zhang T, Chen L, Liu W, Hu S, et al. Modeling soil moisture from multisource data by stepwise multilinear regression: an application to the Chinese loess plateau. ISPRS Int. J. GeoInf. 2021;10 (4):233. doi: 10.3390/ijgi10040233

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».