Informative value of infrared survey data for detecting properties of arable soils


Cite item

Full Text

Abstract

Possibility of detecting soil fertility parameters based on the use of thermal survey data was studied on the test area of Yasnogorsky District, Tula region, Russia. The test area has gray forest slightly eroded arable soils located in the flat part of the slope. During the field works, an open soil surface was photographed using a FLIR VUE 512 thermal imager (range 7.5-13.5 mkm), soil samples were also taken from a layer of 0-5 cm and soil moisture was measured in a layer of 15-20 cm. For almost all parameters of soil fertility (pH, humus content, potassium content, exchange cations - Mg++, K+, Na+), a statistically significant correlation was established (r =0.4-0.7) between them and the survey data in the thermal range of the spectrum. For moderate correlations, polynomial regression equations were compiled. Among the studied fertility parameters, the pH of the salt extract, the content of potassium oxide and potassium exchange cations had significant coefficient of determination (R2 > 0.60) with the thermal range of the spectrum - R2= 0.61, R2 =0.60 and R2 = 0.63, respectively. The obtained results have shown that thermal imaging can be used to map some parameters of soil fertility for the region. Nevertheless, it turned out to be impossible to reliably detect all the main parameters of soil fertility of the test field on the basis of thermal survey data. However, the thermal soil survey data can be used as auxiliary data when shooting in the visible and nearIR ranges, which helps to improve the accuracy of contactless soil monitoring.

About the authors

Praskovya G. Grubina

V.V. Dokuchaev Soil Science Institute

Author for correspondence.
Email: grubina_pg@esoil.ru
ORCID iD: 0000-0001-6325-4604
SPIN-code: 8805-9813

Junior Researcher

7/2 Pyzhevsky lane, Moscow, 119017, Russian Federation

Igor Y. Savin

V.V. Dokuchaev Soil Science Institute; RUDN University

Email: savin_iyu@esoil.ru
ORCID iD: 0000-0002-8739-5441
SPIN-code: 5132-0631

Doctor of Agricultural Sciences, Academician of the Russian Academy of Sciences, Professor, Institute of Ecology, RUDN University; Chief Researcher, Dokuchaev Soil Sciense Institute

6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation

References

  1. Savin IY, Simakova MS. Sputnikovye tekhnologii dlya inventarizatsii i monitoringa pochv v Rossii [Satellite technologies for soil inventory and monitoring in Russia]. Current problems in remote sensing of the Earth from space. 2012;9(5):104-115. (In Russ.).
  2. Gomez C, Rossel RAV, McBratney AB. Soil organic carbon prediction by hyperspectral remote sensing and field visNIR spectroscopy: An Australian case study. Geoderma. 2008;146(3-4):403-411. doi: 10.1016/j. geoderma.2008.06.011
  3. Khayamim F, Wetterlind J, Khademi H, Robertson J, Cano AF, Stenberg B. Using visible and near infrared spectroscopy to estimate carbonates and gypsum in soils in arid and subhumid regions of Isfahan, Iran. Journal of Near Infrared Spectroscopy. 2015;23(3):155-165. doi: 10.1255/jnirs.1157
  4. Demattê JAM, RamirezLopez L, Marques KP, Rodella AA. Chemometric soil analysis on the determination of specific bands for the detection of magnesium and potassium by spectroscopy. Geoderma. 2017;288:8-22. doi: 10.1016/j.geoderma.2016.11.013
  5. Shao Y, He Y. Nitrogen, phosphorus, and potassium prediction in soils, using infrared spectroscopy. Soil Research. 2011;49(2):166-172. doi: 10.1071/SR10098
  6. Rossel RAV, Walvoort DJJ, McBratney AB, Janik LJ, Skjemstad JO. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma. 2006;131(1-2):59-75. doi: 10.1016/j.geoderma.2005.03.007
  7. SorianoDisla JM, Janik LJ, Rossel RAV, Macdonald LM, McLaughlin MJ. The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties. Applied spectroscopy reviews. 2014;49(2):139-186. doi: 10.1080/05704928.2013.811081
  8. Savin, IY, Vindeker GV. Some specifics in using optical properties of soil surface for moisture detection. Eurasian Soil Science. 2021;54(7):1019-1027. (In Russ.). doi: 10.31857/S0032180X21070121
  9. Han L, Wang C, Liu Q, Wang G, Yu T, Gu X, et al. Soil moisture mapping based on multi-source fusion of optical, near-infrared, thermal infrared, and digital elevation model data via the Bayesian maximum entropy framework. Remote Sensing. 2020;12(23):3916. doi: 10.3390/rs12233916
  10. Mira M, Valor E, Caselles V, Rubio E, Coll C, Galve JM, et al. Soil moisture effect on thermal infrared (8-13-μm) emissivity. IEEE Transactions on Geoscience and Remote Sensing. 2010;48(5):2251-2260. doi: 10.1109/TGRS.2009.2039143
  11. Sanchez JM, French AN, Mira M, Hunsaker DJ, Thorp KR, Valor E, et al. Thermal infrared emissivity dependence on soil moisture in field conditions. IEEE transactions on geoscience and remote sensing. 2011;49(11):4652-4659. doi: 10.1071/SR10098
  12. Ivannikov DI, Chekin VV, Melnik MS, Fedoseeva EV, Sivokon YV. Monitoring of agricultural land with using remote sensing technology. Young Science. 2014;1(2):52-55. (In Russ.).
  13. Liu Q, Yan C, Xiao Q, Yan G, Fang L. Separating vegetation and soil temperature using airborne multiangular remote sensing image data. International Journal of Applied Earth Observation and Geoinformation. 2012;17:66- 75. doi: 10.1016/j.jag.2011.10.003
  14. Xu L, Wang Z, Hu J, Wang S, Nyongesah M. Estimation of soil salinity under various soil moisture conditions using laboratory based thermal infrared spectra. Journal of the Indian Society of Remote Sensing. 2021;49:959-969. doi: 10.1007/s12524-020-01271-9
  15. Silvero NEQ, Di Raimo LADL, Pereira GS, de Magalhães LP, da Silva Terra F, Dassan MAA, et al. Effects of water, organic matter, and iron forms in midIR spectra of soils: Assessments from laboratory to satellite-simulated data. Geoderma. 2020;375:114480. doi: 10.1016/j.geoderma.2020.114480
  16. Eisele A, Lau I, Hewson R, Carter D, Wheaton B, Ong C, et al. Applicability of the thermal infrared spectral region for the prediction of soil properties across semi-arid agricultural landscapes. Remote Sensing. 2012;4(11):3265-3286. doi: 10.3390/rs4113265
  17. Ivushkin K, Bartholomeus H, Bregt AK, Pulatov A, Kempen B, de Sousa L. Global mapping of soil salinity change. Remote Sensing of Environment. 2019;231:111260. doi: 10.1016/j.rse.2019.111260
  18. Xu C, Qu J, Hao X, Zhu Z, Gutenberg L. Surface soil temperature seasonal variation estimation in a forested area using combined satellite observations and in-situ measurements. International Journal of Applied Earth Observation and Geoinformation. 2020;91:102156. doi: 10.1016/j.jag.2020.102156
  19. Zhang Y, Shen H, Gao Q, Zhao L. Estimating soil organic carbon and pH in Jilin Province using Landsat and ancillary data. Soil Science Society of America Journal. 2020;84(2):556-567. doi: 10.1002/saj2.20056
  20. Sorokina NP. Struktura pochvennogo pokrova pakhotnykh zemel’: tipizatsiya, kartografirovanie, agroekologicheskaya otsenka [Structure of soil cover of arable land: Typification, mapping, agroecological assessment]. Moscow; 2003. (In Russ.).
  21. Interstate Council for Standardization, Methology and Certification. GOST 26107-84. Pochvy. Metody opredelenija obshhego azota [Soils. Methods for determining total nitrogen]. Moscow; 1984. (In Russ.).
  22. Kireev IM, Koval ZM. Metod i sredstvo dlya ekspress-otsenki vlazhnosti pochvy [Method and tool for rapid assessment of soil moisture]. AgroForum. 2019;(5):20-23. (In Russ.).
  23. Palombo A, Pascucci S, Loperte A, Lettino A, Castaldi F, Muolo MR, et al. Soil moisture retrieval by integrating TASI-600 airborne thermal data, WorldView 2 satellite data and field measurements: Petacciato case study. Sensors. 2019;19(7):1515. doi: 10.3390/s19071515
  24. Hassan AM, Belal AA, Hassan MA, Farag FM, Mohamed ES. Potential of thermal remote sensing techniques in monitoring waterlogged area based on surface soil moisture retrieval. Journal of African Earth Sciences. 2019;155:64-74. doi: 10.1016/j.jafrearsci.2019.04.005
  25. Grubina PG, Savin IY, Prudnikova EY. The possibilities of using thermal infrared imaging data for detecting the main parameters of arable soil fertility. Dokuchaev Soil Bulletin. 2020;(105):146-172. (In Russ.). doi: 10.19047/0136-1694-2020-105-146-172
  26. Pascucci S, Casa R, Belviso C, Palombo A, Pignatti S, Castaldi F. Estimation of soil organic carbon from airborne hyperspectral thermal infrared data: a case study. European Journal of Soil Science. 2014;65(6):865-875. doi: 10.1111/ejss.12203
  27. Eisele A, Chabrillat S, Hecker C, Hewson R, Lau IC, Rogass C, et al. Advantages using the thermal infrared (TIR) to detect and quantify semi-arid soil properties. Remote Sensing of Environment. 2015;163:296-311. doi: 10.1016/j.rse.2015.04.001
  28. Ait Hssaine B, Chehbouni A, ErRaki S, Khabba S, Ezzahar J, Ouaadi N, et al. On the Utility of HighResolution Soil Moisture Data for Better Constraining Thermal-B ased Energy Balance over Three Semi-Arid Agricultural Areas. Remote Sensing. 2021;13(4):727. doi: 10.3390/rs13040727
  29. Yuan L, Li L, Zhang T, Chen L, Liu W, Hu S, et al. Modeling soil moisture from multisource data by stepwise multilinear regression: an application to the Chinese loess plateau. ISPRS Int. J. GeoInf. 2021;10 (4):233. doi: 10.3390/ijgi10040233

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».