DEVELOPMENT OF MICROSATELLITE MARKERS WITH LONG MOTIFS FOR SCOTS PINE BASED ON WHOLE-GENOME de novo SEQUENCING
- Authors: Oreshkova N.V.1,2,3, Bondar E.I.1,3, Sharov V.V.1,3, Krutovsky K.V.3,4,5,6
-
Affiliations:
- Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science
- Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science, V. N. Sukachev Institute of Forest, Russian Academy of Sciences, Siberian Branch
- Siberian Federal University
- N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences
- G. F. Morozov Voronezh State Forest Engineering University
- Georg-August University of Göttingen
- Issue: No 1 (2025)
- Pages: 23-33
- Section: RESEARCH ARTICLES
- URL: https://journals.rcsi.science/2311-1410/article/view/350546
- DOI: https://doi.org/10.15372/SJFS20250103
- ID: 350546
Cite item
Full Text
Abstract
Modern methods of whole-genome sequencing have made it possible to develop a large number of DNA markers, both selectively neutral and functional. Microsatellite loci are the most informative, reproducible, relatively inexpensive and highly polymorphic among other genetic markers. Whole-genome sequencing significantly simplifies their search and development. The article is devoted to the development of new microsatellite markers for Scots pine ( Pinus sylvesrtis L.). Several thousand contigs containing microsatellite loci with tri-, tetra- and pentanucleotide motifs were selected in the draft genome assembly of Scots pine obtained by the authors. The search was specifically focused on loci with a repetitive motif length longer than two nucleotides, as the most reliable for genotyping even in a simple gel electrophoresis. A total of 39 primer pairs were tested. Of these, six loci with tri-, tetra- and pentanucleotide repeats were ultimately selected, which showed a high level of polymorphism, reliable genotyping, and were additionally tested in two populations from the Severo-Yeniseisky and Kuraginsky districts in Krasnoyarsk Region (East Siberia, Russia) and compared with other populations and marker sets according to published data. The developed markers can be used in the future in various population genetic studies and for identifying the origin of wood and plant material.
About the authors
N. V. Oreshkova
Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science; Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science, V. N. Sukachev Institute of Forest, Russian Academy of Sciences, Siberian Branch; Siberian Federal University
Author for correspondence.
Email: oreshkova@ksc.krasn.ru
Krasnoyarsk, Russian Federation; Krasnoyarsk, Russian Federation; Krasnoyarsk, Russian Federation
E. I. Bondar
Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science; Siberian Federal University
Email: bone-post@yandex.ru
Krasnoyarsk, Russian Federation; Krasnoyarsk, Russian Federation
V. V. Sharov
Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science; Siberian Federal University
Email: vsharov@sfu-kras.ru
Krasnoyarsk, Russian Federation; Krasnoyarsk, Russian Federation
K. V. Krutovsky
Siberian Federal University; N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences; G. F. Morozov Voronezh State Forest Engineering University; Georg-August University of Göttingen
Email: konstantin.krutovsky@forst.uni-goettingen.de
Krasnoyarsk, Russian Federation; Moscow, Russian Federation; Voronezh, Russian Federation; Gottingen, Germany
References
- Белоконь, М. М., Политов Д. В., Мудрик Е. А., Полякова Т. А., Шатохина А. В., Белоконь Ю. С., Орешкова Н. В., Путинцева Ю. А., Шаров В. В., Кузьмин Д. А., Крутовский К. В. Разработка микросателлитных маркеров сосны кедровой сибирской (Pinus sibirica Du Tour) по результатам полногеномного de novo секвенирования // Генетика. 2016. Т. 52. № 12. С. 1418-1427.
- Ильинов А. А., Раевский Б. В. Сравнительная оценка генетического разнообразия естественных популяций и клоновых плантаций сосны обыкновенной и ели финской в Карелии // Экол. генет. 2015. Т. 13. № 4. С. 55-67.
- Ильинов А. А., Раевский Б. В. Состояние генофонда сосны обыкновенной Pinus sylvestris L. в Карелии // Сиб. лесн. журн. 2016. № 5. С. 45-54.
- Носкова Н. Е., Третьякова И. Н. Влияние стресса на репродуктивные способности сосны обыкновенной // Хвойные бореал. зоны. 2006. Т. 23. № 3. С. 54-63.
- Орешкова Н. В., Бондар Е. И., Путинцева Ю. А., Шаров В. В., Кузьмин Д. А., Крутовский К. В. Разработка ядерных микросателлитных маркеров с длинными (трех-, четырех-, пяти- и шестинуклеотидными) мотивами для трех видов лиственницы на основе полногеномного de novo секвенирования лиственницы сибирской (Larix sibirica Ledeb.) // Генетика. 2019. Т. 55. № 4. С. 418-425.
- Орешкова Н. В., Путинцева Ю. А., Шаров В. В., Кузьмин Д. А., Крутовский К. В. Разработка микросателлитных маркеров лиственницы сибирской (Larix sibirica Ledeb.) на основе полногеномного de novo секвенирования // Генетика. 2017. Т. 53. № 11. С. 1278-1284.
- Шуваев Д. Н., Ибе А. А., Щерба Ю. Е., Сухих Т. В., Шилкина Е. А., Усова Е. А., Лисотова Е. В., Репях М. В., Ступакова О. М. Разработка панели ядерных микросателлитных локусов для оценки легальности происхождения древесины сосны обыкновенной в Красноярском крае // Хвойные бореал. зоны. 2020. Т. 38. № 5-6. С. 297-304.
- Шуваев Д. Н., Ибе А. А., Щерба Ю. Е., Сухих Т. В., Шилкина Е. А., Шеллер М. А., Усова Е. А., Лисотова Е. В., Репях М. В., Ступакова О. М. Молекулярно-генетическая характеристика популяций сосны обыкновенной в Красноярском крае по панели 15 ядерных микросателлитных локусов // Лесоведение. 2022. № 5. С. 530-539.
- Bajc M., Aravanopoulos F. A., Westergren M., Fussi B., Kavaliauskas D., Alizoti P., Kiourtsis F., Kraigher H. (Eds.) Manual for forest genetic monitoring. 1st ed. Ljubljana: Silva Slovenica Publ. Centre, 2020. 326 p.
- Beier S., Thiel T., Münch T., Scholz U., Mascher M. MISA-web: a web server for microsatellite prediction // Bioinformatics. 2017. V. 33. N. 16. P. 2583-2585.
- Belokon’ M. M., Politov D. V., Mudrik E. A., Polyakova T. A., Shatokhina A. V., Belokon’ Yu. S., Oreshkova N. V., Putintseva Yu. A., Sharov V. V., Kuz’min D. A., Krutovsky K. V. Development of microsatellite genetic markers in Siberian stone pine (Pinus sibirica Du Tour) based on the de novo whole genome sequencing // Rus. J. Genet. 2016. V. 52. Iss. 12. P. 1263-1271 (Original Rus. Text © M. M. Belokon’, D. V. Politov, E. A. Mudrik, T. A. Polyakova, A. V. Shatokhina, Yu. S. Belokon’, N. V. Oreshkova, Yu. A. Putintseva, V. V. Sharov, D. A. Kuz’min, K. V. Krutovsky, 2016, publ. in Genetika. 2016. V. 52. N. 12. P. 1418-1427.).
- Breidenbach N., Gailing O., Krutovsky K. V. Development of novel polymorphic nuclear and chloroplast microsatellite markers in coast redwood (Sequoia sempervirens) // Plant Genet. Res.: Characterization and Utilization. 2019. V. 17. N. 3. P. 293-297.
- Doyle J. J., Doyle J. L. Isolation of plant DNA from fresh tissue // Focus. 1990. V. 12. N. 1. P. 13-15.
- Fang P., Niu Sh., Yuan H., Li Zh., Zhang Y., Yuan L., Li W. Development and characterization of 25 EST-SSR markers in Pinus sylvestris var. mongolica (Pinaceae) // Appl. Plant Sci. 2014. V. 2. Iss. 1. Article number 1300057.
- Farjon A. Pines: drawings and descriptions of the genus Pinus. 2nd ed. Leiden, Boston: Brill, 2005. 235 p.
- Fussi B., Westergren M., Aravanopoulos F., Baier R., Kavaliauskas D., Finzgar D., Alizoti P., Bozic G., Avramidou E., Konnert M., Kraigher H. Forest genetic monitoring: an overview of concepts and definitions // Environ. Monitor. Assess. 2016. V. 188. Article number 493. 12 p.
- Korbie D. J., Mattick J. S. Touchdown PCR for increased specificity and sensitivity in PCR amplification // Nat. Protocols. 2008. V. 3. N. 9. P. 1452-1456.
- Liewlaksaneeyanawin C., Ritland C. E., El-Kassaby Y. A., Ritland K. Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs // Theor. Appl. Genet. 2004. V. 109. N. 2. P. 361-369.
- Majeed A., Singh A., Choudhary Sh., Bhardwaj P. Transcriptome characterization and development of functional polymorphic SSR marker resource for Himalayan endangered species, Taxus contorta (Griff) // Industr. Crops Products. 2019. V. 140. Article number 111600.
- Meirmans P. G. Using the AMOVA framework to estimate a standardized genetic differentiation measure // Evolution. 2006. V. 60. N. 11. P. 2399-2402.
- Meirmans P. G., Hedrick P. W. Assessing population structure: FST and related measures // Molecul. Ecol. Res. 2011. V. 11. N. 1. P. 5-18.
- Merritt B. J., Culley T. M., Avanesyan A., Stokes R., Brzyski J. An empirical review: characteristics of plant microsatellite markers that confer higher levels of genetic variation // Appl. Plant Sci. 2015. V. 3. N. 8. Article number 1500025.
- Nowakowska J. Microsatellite markers in analysis of forest-tree populations // Microsatellite markers / I. Y. Abdurakhmonov (Ed.). Open Sci.INTECH, 2016. P. 95-116.
- Oreshkova N. V., Bondar E. I., Putintseva Yu. A., Sharov V. V., Kuzmin D. A., Krutovsky K. V. Development of nuclear microsatellite markers with long (tri-, tetra-, penta- and hexanucleotide) motifs for three larch species based on the de novo whole genome sequencing of Siberian larch (Larix sibirica Ledeb.) // Rus. J. Genet. 2019. V. 55. N. 4. P. 444-450 (Original Rus. Text © N. V. Oreshkova, E. I. Bondar, Yu. A. Putintseva, V. V. Sharov, D. A. Kuzmin, K. V. Krutovsky, 2019, publ. in Genetika. 2019. V. 55. N. 4. P. 418-425).
- Oreshkova N. V., Bondar E. I., Sharov V. V., Dhungana S. P., Gailing O., Krutovsky K. V. Population genetic variation of microsatellite markers developed for Siberian fir (Abies sibirica Ledeb.) and European silver fir (Abies alba Mill.) using whole genome sequencing data // Plant Genet. Res.: Characterization and Utilization. 2023. V. 21. N. 2. P. 149-158.
- Oreshkova N. V., Putintseva Yu. A., Sharov V. V., Kuzmin D. A., Krutovsky K. V. Development of microsatellite genetic markers in Siberian larch (Larix sibirica Ledeb.) based on the de novo whole genome sequencing // Rus. J. Genet. 2017. V. 53. N. 11. P. 1194-1199 (Original Rus. Text © N. V. Oreshkova, Yu. A. Putintseva, V. V. Sharov, D. A. Kuzmin, K. V. Krutovsky, 2017, publ. in Genetika. 2017. V. 53. N. 11. P. 1278-1284).
- Peakall R. O. D., Smouse P. E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research // Molecul. Ecol. Not. 2006. V. 6. N. 1. P. 288-295.
- Portela R. M., Medalha L. M. D. S., Quadros J. F. D. S., De Lara J. H., Feitosa Q. A., Costa J. G., Paludeto J. G. Z., Gomes C. A. F. C. Microsatellite markers in the sustainable management of forest genetic resources // IOSR J. Business and Manag. 2024. V. 26. Iss. 2. Ser. 7. P. 37-45.
- Porth I., El-Kassaby Y. A. Assessment of the genetic diversity in forest tree populations using molecular markers // Diversity. 2014. V. 6. N. 2. P. 283.
- Richardson D. M. (Ed.). Ecology and biogeography of Pinus. Cambridge, UK: Cambridge Univ. Press, 1998. 527 p.
- Rozen S., Skaletsky H. Primer3 on the WWW for general users and for biologist programmers // Bioinformatics methods and protocols. Methods in molecular biology / S. Misener, S. Krawetz (Eds.). Totowa: Humana Press, 1999. V. 132 P. 365-386.
- Sebastiani F., Pinzauti F., Kujala S. T., Gonzalez-Martınez S. C., Vendramin G. G. Novel polymorphic nuclear microsatellite markers for Pinus sylvestris L. // Conserv. Genet. Res. 2012. V. 4. N. 2. P. 231-234.
- Tóth E. G., Vendramin G. G., Bagnoli F., Cseke K., Höhn M. High genetic diversity and distinct origin of recently fragmented Scots pine (Pinus sylvestris L.) populations along the Carpathians and the Pannonian Basin // Tree Genet. Genom. 2017. V. 13. Article number 47.
- Ueno S., Wen Y., Tsumura Y. Development of EST-SSR markers for Taxus cuspidata from publicly available transcriptome sequences // Biochem. Syst. Ecol. 2015. V. 63. P. 20-26.
- Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B. C., Remm M., Rozen S. G. Primer3 - new capabilities and interfaces // Nucleic Acids Res. 2012. V. 40. Article number 115.
- Van Oosterhout C., Hutchinson W. F., Wills D. P. M., Shipley P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data // Molecul. Ecol. Not. 2004. V. 4. N. 3. P. 535-538.
- Van Oosterhout C., Weetman D., Hutchinson W. F. Estimation and adjustment of microsatellite null alleles in nonequilibrium populations // Molecul. Ecol. Not. 2006. V. 6. N. 1. P. 255-256.
- Wright S. The interpretation of population structure by F-statistics with special regard to systems of mating // Evolution. 1965. V. 19. N. 3. P. 395-420.
- Żukowska W. B, Wójkiewicz B., Lewandowski A., László R., Wachowiak W. Genetic variation of Scots pine (Pinus sylvestris L.) in Eurasia: impact of postglacial recolonization and human-mediated gene transfer // Ann. For. Sci. 2023. V. 80. Iss. 1. Article number 42.
Supplementary files


