FEATURES OF ELEMENTAL COMPOSITION AND PIGMENT COMPLEX OF THE SIBERIAN LARCH NEEDLES UNDER IMPACT OF IRKUTSK ALUMINUM SMELTER EMISSIONS
- Authors: Afanas’eva L.V.1, Kalugina O.V.2, Oskorbina M.V.2, Kharpukhaeva T.M.1
-
Affiliations:
- Institute of General and Experimental Biology, Russian Academy of Sciences, Siberian Branch
- Siberian Instititue of Plant Physiology and Biochemistry, Russian Academy of Sciences, Siberian Branch
- Issue: No 1 (2022)
- Pages: 20-32
- Section: RESEARCH ARTICLES
- URL: https://journals.rcsi.science/2311-1410/article/view/316216
- DOI: https://doi.org/10.15372/SJFS20220102
- ID: 316216
Cite item
Full Text
Abstract
The paper presents data on the content of 32 chemical elements in the needles of the Siberian larch Larix sibirica Ledeb. trees growing at different distances from the Irkutsk aluminum smelter (IrkAS), as well as in the background areas. It is shown that a pronounced imbalance in the content of elements is observed near the plant in the needles of larch, as evidenced by an increase in the concentration of F by 2.1 times, S by 1.9 times, light metals (Al, Li, Ti, Sc) by 2.4-5.3 times compared to background values. In the group of heavy metals and metalloids, the concentrations of Be, Cd, Ce, Co, Cr, Fe, La, Pb, V, Zn, Y - changed to a greater extent-their increased level in the needles was noted at a distance of up to 40 km from the smelter. The concentrations of Ba, Si, As, Ni increased significantly in the industrial zone, while in the rest of the territory they were within the background values. The amount of biogenic macroelements (N, K, Ca, Mg, P, Na) in the contaminated needles increased by 17-23 %. The imbalance in the elemental composition of needles is evidenced by the indices of biogeochemical transformation, the high values of which were found in the industrial zone, the average values - at a distance of up to 5 km from the smelter, in the rest of the territory changes in the elemental composition of needles are less pronounced, and the transformation index corresponds to the minimum level. Disturbances in the work of the photosynthetic apparatus of the needles of contaminated trees are manifested in a decrease in the content of chlorophylls a, b and carotenoids, F v /F m , while the background fluorescence of chlorophyll F0, increases compared to background values. Revealed inverse correlations between the content of S, F, as well as a number of heavy metals in needles and the level of pigments in it ( R = -0.59-0.87) indicate a significant effect of emissions on the pigment complex of trees, especially in the industrial zone of the smelter and at a distance of up to 5 km from it.
About the authors
L. V. Afanas’eva
Institute of General and Experimental Biology, Russian Academy of Sciences, Siberian Branch
Author for correspondence.
Email: afanl@mail.ru
Ulan-Ude, Russian Federation
O. V. Kalugina
Siberian Instititue of Plant Physiology and Biochemistry, Russian Academy of Sciences, Siberian Branch
Email: olignat32@inbox.ru
Irkutsk, Russian Federation
M. V. Oskorbina
Siberian Instititue of Plant Physiology and Biochemistry, Russian Academy of Sciences, Siberian Branch
Email: omaria-84@yandex.ru
Irkutsk, Russian Federation
T. M. Kharpukhaeva
Institute of General and Experimental Biology, Russian Academy of Sciences, Siberian Branch
Email: takhar@mail.ru
Ulan-Ude, Russian Federation
References
- Абраменко О. В. Использование лиственницы сибирской (Larix sibirica Ledeb.) как биоиндикатора состояния городских насаждений в условиях лесостепной зоны Хакасско-Минусинской котловины // Вестн. КрасГАУ. 2015. № 1. С. 184–188.
- Афанасьева Л. В. Физиолого-биохимическая адаптация лиственницы сибирской (Larix sibirica Ledeb.) к условиям городской среды // Сиб. лесн. журн. 2018. № 3. С. 21–29.
- Воробейчик Е. Л., Пищулин П. Г. Влияние отдельных деревьев на рН и содержание тяжелых металлов в лесной подстилке в условиях промышленного загрязнения // Почвоведение. 2009. № 8. С. 927–939.
- Государственный доклад «О состоянии и об охране окружающей среды Иркутской области в 2020 г.». Иркутск: Мегапринт, 2021. 330 с.
- Касимов Н. С., Битюкова В. Р., Кислов А. В., Кошелева Н. Е., Никифорова Е. М., Малхазова С. М., Шартова Н. В. Проблемы экогеохимии крупных городов // Охрана и разведка недр. 2012. № 7. С. 8–13.
- Кузьмичев В. В., Авдеева Е. В. Реакция лиственницы сибирской (Larix sibirica Ledeb.) на техногенные воздействия городской среды // Хвойные бореальной зоны. 2007. Вып. 24. № 1. С. 36–42.
- Куликов Б. П., Сторожев Ю. И. Пылегазовые выбросы алюминиевых электролизеров с самообжигающими анодами. Красноярск: СФУ, 2012. 267 с.
- Лысенко В. С., Вардуни Т. В., Сойер В. Г., Краснов В. П. Флуоресценция хлорофилла растений как показатель экологического стресса: теоретические основы применения метода // Фундамент. иссл. 2013. № 4-1. С. 112–120.
- Маторин Д. Н., Алексеев А. А. Флуоресценция хлорофилла для биоиндикации растений. М.: ПКЦ Альтекс, 2013. 364 с.
- Михайлова Т. А., Бережная Н. С., Игнатьева О. В. Элементный состав хвои и морфофизиологические параметры сосны обыкновенной в условиях техногенного загрязнения. Иркутск: Ин-т геогр. СО РАН, 2006. 134 с.
- Михайлова Т. А., Калугина О. В., Шергина О. В. Фитомониторинг атмосферного загрязнения в Байкальском регионе // Сиб. экол. журн. 2013. Т. 20. № 5. С. 725–732.
- Михайлова Т. А., Калугина О. В., Шергина О. В. Динамика состояния сосновых лесов Предбайкалья в условиях воздействия антропогенных факторов // Сиб. лесн. журн. 2017. № 1. С. 44–55.
- Михайлова Т. А., Калугина О. В., Шергина О. В. Мониторинг техногенного загрязнения и состояния сосновых лесов на примере Иркутской области // Лесоведение. 2020. № 3. С. 265–273.
- Муратова Е. Н., Карпюк Т. В., Владимирова О. С., Сизых О. А., Квитко О. В. Цитологическое изучение лиственницы сибирской в антропогенно нарушенных районах г. Красноярска и его окрестностей // Вестн. экол. лесовед. и ландшафтовед. 2009. № 9. С. 99–108.
- Романова Л. И. Структурно-функциональные особенности лиственницы сибирской в зеленых насаждениях г. Красноярска и его окрестностей: автореф. дис. канд. биол. наук: 03.00.05. Красноярск: Ин-т леса им. В. Н. Сукачева СО РАН, 2005. 24 с.
- Тужилкина В. В. Пигментный комплекс хвои сосны в лесах Европейского Северо-Востока // Лесоведение. 2012. № 4. С. 16–23.
- Тужилкина В. В. Влияние аэротехногенного загрязнения целлюлозно-бумажного производства на пигментный комплекс сосны обыкновенной // Теор. прикл. экол. 2021. № 1. С. 90–96.
- Шергина О. В., Михайлова Т. А. Состояние древесных растений и почвенного покрова парковых и лесопарковых зон г. Иркутска. Иркутск: Ин-т геогр. СО РАН, 2006. 200 с.
- Янин Е. П. Скандий в окружающей среде (распространенность, техногенные источники, вторичные ресурсы) // Пробл. окруж. среды и природ. ресурсов. 2007. № 8. С. 70–90.
- Aerts R., Chapin F. S. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns // Adv. Ecol. Res. 1999. V. 30. P. 1–67.
- Baciak M., Warminski K., Bes A. The effect of selected gaseous air pollutants on woody plants // For. Res. Papers. 2015. V. 76. N. 4. P. 401–409.
- Brougham K. M., Roberts S. R., Davison A. W., Port G. R. The impact of aluminium smelter shut-down on the concentration of fluoride in vegetation and soils // Environ. Pollut. 2013. V. 178. P. 89–96.
- Demmig-Adams B., Adams W., Ebbert V., Logan B. Ecophysiology of the xanthophyll cycle // The photochemistry of carotenoids. Kluwer Acad. Publ., New York, Boston, Dordrecht, London, Moscow, 2004. P. 245–269.
- Feng Y., Cheng J., Shen J., Sun H. Spatial effects of air pollution on public health in China // Environ. Res. Econ. 2019. V. 73. P. 229–250.
- Gameiro C., Utkin A. B., Cartaxana P., Silva J. M. da, Matos A. R. The use of laser induced chlorophyll fluorescence (LIF) as a fast and non-destructive method to investigate water deficit in Arabidopsis // Agr. Water Manag. 2016. V. 164. P. 127–136.
- Göttlein A. Grenzwertbereiche für die ernährungsdiagnostische Einwertung der Hauptbaumarten Fichte, Kiefer, Eiche, Buche // Allg. Forst- u. J.-Ztg. 2015. N. 186. P. 110–116 (in German).
- Hazrati S., Tahmasebi-Sarvestani Z., Modarres-Sanavy S. A. M., Mokhtassi-Bidgoli A., Nicola S. Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. // Plant Physiol. Biochem. 2016. V. 106. P. 141–148.
- Hall J. L. Cellular mechanisms for heavy metal detoxification and tolerance // J. Exp. Bot. 2002. V. 53. Iss. 366. P. 1–11.
- Jedmowski C., Brüggemann W. Imaging of fast chlorophyll fluorescence induction curve (OJIP) parameters, applied in a screening study with wild barley (Hordeum spontaneum) genotypes under heat stress // J. Photochem. Photobiol. B: Biol. 2015. V. 151. P. 153–160.
- Jha S. K., Singh R. K., Damodaran T., Mishra V. K., Sharma D. K., Rai D. Fluoride in groundwater: toxicological exposure and remedies // J. Toxicol. Environ. Health. B Crit. Rev. 2013. V. 16. N. 1. P. 52–66.
- Jim C. Y., Chen W. Y. Assessing the ecosystem service of air pollutant removal by urban trees in Guangzhou (China) // J. Environ. Manag. 2008. V. 88. N. 4. P. 665–676.
- Joshi P. C., Swami A. Physiological responses of some tree species under roadside automobile pollution stress around city of Haridwar, India // Environ. Systems and Decisions. 2007. V. 27. N. 3. P. 365–374.
- Kabata-Pendias A. Trace elements in soils and plants. 4th Ed. Boca Raton, USA: CRC Press, 2010. 548 p.
- Lazar D. The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light // Funct. Plant Biol. 2006. V. 33. N. 1. P. 9–30.
- Lichtenthaler H. K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes // Methods in Enzymology. 1987. V. 148. P. 350–382.
- Mandre M. Vertical gradients of mineral elements in Pinus sylvestris crown in alkalised soil // Environ. Monit. Assess. 2009. V. 159. N. 1–4. P. 111–124.
- Mandre M., Lukjanova A. Biochemical and structural characteristics of Scots pine (Pinus sylvestris L.) in an alkaline environment // Eston. J. Ecol. 2011. V. 60. N. 4. P. 264–283.
- Manual on methods and criteria for harmonized sampling. Assessment, monitoring and analysis of the effects of air pollution on forests UNECE. ICP Forests Programme Coordinating Centre, 2010. http://www.icp-forests.org/Manual.htm/
- Marschner H. Mineral nutrition of higher plants. 3rd Ed. Acad. Press., 2011. 672 p.
- Martin S. C., Lariviere C. Community health risk assessment of primary aluminum smelter emissions // J. Occup. Environ. Med. 2014. V. 56. N. 5. S. 33–39.
- Mellert K. H., Göttlein A. Comparison of new foliar nutrient thresholds derived from van den Burg’s literature compilation with established central European references // Europ. J. For. Res. 2012. V. 131. N. 5. P. 1461–1472.
- Millaleo R., Reyes-Diaz M., Ivanov A. G., Mora M. L., Alberdi M. Manganese as essential and toxic element for plant: transport, accumulation and resistance mechanisms // J. Soil Sci. Plant Nutr. 2010. V. 10. N. 4. P. 476–494.
- Mikhailova T. A., Afanasieva L. V., Kalugina O. V., Shergina O. V., Taranenko E. N. Changes in nutrition and pigment complex in pine (Pinus sylvestris L.) needles under technogenic pollution in Irkutsk region, Russia // J. For. Res. 2017. V. 6. N. 2. P. 386–392.
- Mikhailova T. A., Kalugina O. V., Shergina O. V. Phytomonitoring of air pollution in the Baikal region // Contemp. Probl. Ecol. 2013. V. 6. N. 5. P. 549–554 (Original Rus. text © T. A. Mikhailova, O. V. Kalugina, O. V. Shergina, 2013, publ. in Sibirskii Ekologicheskii Zhurnal. 2013. V. 20. N. 5. P. 725–732).
- Nowak D. J., Hirabayashi S., Bodine A., Greenfield E. Tree and forest effects on air quality and human health in the United States // Environ. Pollut. 2014. V. 193. P. 119–129.
- Orekhov D. I., Yakovleva O. V., Goryachev S. N., Protopopov F. F., Alekseev A. A. The use of parameters of chlorophyll a fluorescence induction to evaluate the state of plants under anthropogenic load // Biophysics. 2015. V. 60. N. 2. P. 263–268.
- Pandey R. Mineral nutrition of plants // Plant Biology and Biotechnology / B. Bahadur, M. Venkat Rajam, L. Sahijram, K. Krishnamurthy (Eds.). New Delhi: Springer, 2015. P. 499–538.
- Rozhkov A. S., Mikhailova T. A. The effects of fluorine-containing emissions on conifers. Springer, Berlin, Heidelberg, 1993. 142 p.
- Sardans J., Alonso R., Janssens I. A., Carnicer J., Veresoglou S., Rillig M. C., Fernandez-Martinez M., Sanders T. G. M., Penuelas J. Foliar and soil concentrations and stoichiometry of nitrogen and phosphorous across European Pinus sylvestris forests: relationships with climate, N deposition and tree growth // Funct. Ecol. 2016. V. 30. N. 5. P. 676–689.
- Sharma A. P., Tripathi B. D. Biochemical responses in tree foliage exposed to coal-fired power plant emission in seasonally dry tropical environment // Environ. Monit. Assess. 2009. V. 158. N. 16. P. 197–212.
- Sha C., Wang T., Lu J. Relative sensitivity of wetland plants to SO₂ pollution // Wetlands. 2010. V. 30. N. 6. P. 1023–1030.
- Status and dynamics of forests in Germany: results of the National forest monitoring / Wellbrock N., Bolte A. (Eds.). V. 237. Springer Int. Publ., 2019.
- Tomasevic M., Anicic M., Jovanović M., Peric-Grujic A., Ristic M. Deciduous tree leaves in trace elements biomonitoring: A contribution to methodology // Ecol. Indicators. 2011. V. 11. N. 6. P. 1689–1695.
- Vanguelova E. I., Reynolds B., Nisbet T., Godbold D. The cycling of pollutants in nonurban forested environments // Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions / D. F. Levia, D. E. Carlyle-Moses, Tanaka (Eds.). Ecol. Stud. Ser. N. 216. Heidelberg, Germany: Springer-Verlag, 2011. P. 679–710.
- Verhoeven A. S., Swanberg A., Thao M., Whiteman J. Seasonal changes in leaf antioxidant systems and xanthophyll cycle characteristics in Taxus media growing in sun and shade environments // Physiol. Plant. 2005. V. 123. P. 428–434.
- Vernon L. P. Spectrophotometric determination of chlorophylls and pheophytins in plant extracts // Anal. Chem. 1960. V. 32. N. 9. P. 1144–1150.
- Vorobeichik E. L., Pishchulin P. G. Effect of individual trees on the pH and the content of heavy metals in forest litters under industrial contamination // Euras. Soil Sci. 2009. V. 42. Iss. 8. P. 861–873 (Original Rus. text © E. L. Vorobeichik, P. G. Pishchulin, 2009, publ. in Pochvovedenie. 2009. N. 8. P. 927–939).
- Wintermans I. F., De Mots A. Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol // Biochem. Biophys. Acta. 1965. V. 109. N. 2. P. 448–454.
Supplementary files
