The conjugacy of climatic indicators in the latitudinal gradient of Eurasia when modeling biomass of forest-forming species

封面

如何引用文章

全文:

详细

The carbon depositing capacity of forest cover in the context of climate stabilization is determined by the productivity of its biomass, which, in turn, is formed under the influence of climate. The first attempts to build maps of forest productivity by stem volume and its growth were based on integrated climate indices without the use of statistical methods. When the taxation indicators of stands and climatic factors were included in the models as independent variables, the contribution of climatic factors to the explanation of the variability of production indicators was statistically insignificant due to the regional level of the models. With the release of multifactorial modeling of biomass to the Eurasian level, the explanatory ability of both taxation and climate variables has become statistically significant. However, the stability of such models was not evaluated and the multicollinearity of the defining variables was not checked. In our study, on the basis of the author’s database on the biomass of trees of forest-forming species of Eurasia and the WorldClim climate database, a conjugate analysis of monthly and average annual precipitation for the period from 1970 to 2000 was performed, the relationship of aboveground biomass of trees with their size, precipitation and temperature was revealed, and the multicollinearity of independent variables in models of biomass of forest-forming species was estimated. It has been established that multicollinearity of determining factors, including temperatures and precipitation, is not observed in the range of the main forest-forming species growing in Northern Eurasia from the subarctic to the southern temperate zones when developing climate-sensitive biomass models. But south of the 37th parallel, in the subtropical, subequatorial and equatorial zones of Eurasia, multicollinearity of temperatures and precipitation occurs when modeling the biomass of trees.

作者简介

I. Tsepordey

Botanical Garden, Russian Academy of Sciences, Ural Branch

编辑信件的主要联系方式.
Email: ivan.tsepordey@yandex.ru
Yekaterinburg, Russian Federation

V. Usoltsev

Botanical Garden, Russian Academy of Sciences, Ural Branch; Ural State Forest Engineering University

Email: usoltsev50@mail.ru
Yekaterinburg, Russian Federation; Yekaterinburg, Russian Federation

D. Noritsin

Sberbank, Analytics Competence Center

Email: norritsin@mail.ru
Yekaterinburg, Russian Federation

参考

  1. Алисов Б. П., Полтараус Б. В. Климатология. М.: Изд-во МГУ, 1974. 300 с
  2. Базилевич Н. И., Дроздов А. В., Родин Л. Е. Продуктивность растительного покрова Земли, общие закономерности размещения и связь с факторами климата // Журн. общ. биол. 1968. Т. 29. № 3. С. 261-271
  3. Волобуев В. Р. О фитоклиматических закономерностях в распределении растительности на территории СССР // Бот. журн. СССР. 1947. № 5. С. 200-205
  4. Григорьев А. А., Будыко М. И. О периодическом законе географической зональности // Докл. АН СССР. 1956. Т. 110. № 1. С. 129-132
  5. Назимова Д. И. Климатическая ординация лесных экосистем как основа их классификации // Лесоведение. 1995. № 4. С. 63-73
  6. Репина Е. Г., Цыпин А. П., Зайчикова Н. А., Ширнаева С. Ю. Эконометрика в табличном редакторе MS Excel: практикум. Самара: Самар. гос. экон. ун-т, 2019. https://rusneb.ru/catalog/000199_000009_010271621
  7. Рябчиков А. М. Гидротермические условия и продуктивность фитомассы в основных ландшафтных зонах // Вестн. МГУ. Сер. V. Геогр. 1968. № 5. С. 41-48
  8. Усольцев В. А. Принципы полифакториальной оценки биопродуктивности древостоев. Красноярск: Ин-т леса и древесины им. В. Н. Сукачева СО АН СССР, 1985. 48 с
  9. Усольцев В. А. Фитомасса модельных деревьев для дистанционной и наземной таксации лесов Евразии. Эл. база данных. 3-е доп. изд. Екатеринбург: Бот. сад УрО РАН; Урал. гос. лесотех. ун-т, 2023. 1 эл. опт. диск (CD-R)
  10. Черепнин В. Л. Зависимость продуктивности растительности от климатических факторов // Бот. журн. 1968. Т. 53. № 7. С. 881-890
  11. Цепордей И. С. Биологическая продуктивность лесообразующих видов в климатическом контексте Евразии. Екатеринбург: Изд-во УМЦ УПИ, 2023. 467 с
  12. Цепордей И. С., Усольцев В. А. Всеобщий характер действия закона Либиха - Шелфорда на биологическую продуктивность лесообразующих видов в климатических градиентах Евразии // Вестн. Поволжск. гос. технол. ун-та. Сер. «Лес. Экология. Природопользование». 2022. № 4 (56). С. 5-17
  13. Baskerville G. L. Use of logarithmic regression in the estimation of plant biomass // Can. J. For. Res. 1972. V. 2. N. 1. P. 49-53
  14. Fan J. W., Wang K., Harris W., Zhong H. P., Hu Z. M., Han B., Zhang W. Y., Wang J. B. Allocation of vegetation biomass across a climate-related gradient in the grasslands of Inner Mongolia //j. Arid Environ. 2009. V. 73. Iss. 4-5. P. 521-528
  15. Forrester D. I., Tachauer I. H. H., Annighoefer P., Barbeito I., Pretzsch H., Ruiz-Peinado R., Stark H., Vacchiano G., Zlatanov T., Chakraborty T., Saha S., Sileshi G. W. Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate // For. Ecol. Manag. 2017. V. 396. P. 160-175
  16. Fu L., Lei X., Hu Z., Zeng W., Tang Sh., Marshall P., Cao L., Song X., Li Y., Liang J.Integrating regional climate change into allometric equations for estimating tree aboveground biomass of Masson pine in China // Ann. For. Sci. 2017a. V. 74. N. 42. P. 1-15
  17. Fu L., Sun W., Wang G. A. Climate-sensitive aboveground biomass model for three larch species in northeastern and northern China // Trees. 2017b. V. 31. Iss. 2. P. 557-573
  18. He X., Lei X.-D., Dong Li-Hu. How large is the difference in large-scale forest biomass estimations based on new climate-modified stand biomass models? // Ecol. Indic. 2021. V. 126. Iss. 4. Article number 107569
  19. Holdridge L. R. Determination of world plant formations from simple climatic data // Science. 1947. V. 105. Iss. 2727. P. 367-368
  20. Keith H., Mackey B. G., Lindenmayer D. B. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests // PNAS. 2009. V. 106. Iss. 28. P. 11635-11640
  21. Khan D., Muneer M. A., Nisa Z.-U., Shah S., Amir M., Saeed S., Uddin S., Munir M. Z., Gao L., Huang H. Effect of сlimatic factors on stem biomass and carbon stock of Larix gmelinii and Betula platyphylla in Daxing’anling Mountain of Inner Mongolia, China // Adv. Meteorol. 2019. V. 2019. Iss. 1. Article number 5692574
  22. Lie Z., Xue L., Jacobs D. F. Allocation of forest biomass across broad precipitation gradients in China’s forests // Sci. Rep. 2018. V. 8. Iss. 1. Article number 10536
  23. Luyssaert S., Inglima I., Jung M. A., Richardson D., Reichstein M., Papale D., Piao S. L., Shulze E. D., Wingate L., Matteucci G., Aragao L., Aubinet M., Beer C., Bernhofer C., Black K. G., Bonal D., Bonnefond J. M., Chambers J., Ciais P., Cook B., Davis K. J., Dolman A. J., Gielen B., Goulden M., Grace J., Granier A., Grelle A., Griffis T., Grunwald T., Guidolotti G., Hanson P. J., Harding R., Hollinger D. Y., Hutyra L. R., Kolari P., Kruijt B., Kutsch W., Lagergren F., Laurila T., Law B. E., Le Maire G., Lindroth A., Loustau D., Malhi Y., Mateus J., Migliavacca M., Misson L., Montagnani L., Moncrieff J., Moors E., Munger J. W., Nikinmaa E., Ollinger S. V., Pita G., Rebmann C., Roupsard O., Saigusa N., Sanz M. J., Seufert G., Sierra C., Smith M. L., Tang J., Valentini R., Vesala T., Janssens I. A. CO2 balance of boreal, temperate, and tropical forests derived from a global database // Glob. Chang. Biol. 2007. V. 13. Iss. 12. P. 2509-2537
  24. Miesner T., Herzschuh U., Pestryakova L. A., Wieczorek M., Zakharov E. S., Kolmogorov A. I., Davydova P. V., Kruse S. Forest structure and individual tree inventories of north-eastern Siberia along climatic gradients // Earth Syst. Sci. Data. 2022. V. 14. N. 12. P. 5695-5716
  25. Pardé J. Dendrométrie. Gap, Louis-Jean, 1961. 147 p
  26. Paterson S. S. The forest area of the world and its potential productivity. The Royal Univ. Goeteborg, Sweden, 1956. 216 p
  27. Reich P. B., Luo Y. J., Bradford J. B., Poorter H., Perry C. H., Oleksyn J. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots // PNAS. 2014. V. 111. N. 38. P. 13721-13726
  28. Statsmodels, 2023. stats.outliers_influence.variance_inflation_factor.html
  29. Stegen J. C., Swenson N. G., Enquist B. J., White E. P., Phillips O. L., Jorgensen P. M., Weiser M. D., Mendoza A. M., Vargas P. N. Variation in above-ground forest biomass across broad climatic gradients // Glob. Ecol. Biogeogr. 2011. V. 20. N. 5. P. 744-754
  30. Weck J. Forstliche Zuwachsund Ertragskunde. Radebeul; Berlin: Neumann Verlag, 1955. 160 p
  31. Wilschut R. A., DeLong J. R., Geisen S. S., Hannula E., Quist C. W., Snoek B., Steinauer K., Wubs E. R. J., Yang Q., Thakur M. P.Combined effects of warming and drought on plant biomass depend on plant woodiness and community type: a meta-analysis // Proc. R. Soc. B. 2022. V. 289. Iss. 1984. Article number 2022.1178
  32. WorldClim версии 2.1 за 1970-2000 годы, 2021. https://worldclim.org/data/index.html
  33. Zeller L., Liang J., Pretzsch H. Tree species richness enhances stand productivity while stand structure can have opposite effects, based on forest inventory data from Germany and the United States of America // For. Ecosyst. 2018. V. 5. Iss. 1. Article number 4
  34. Zeng W. S., Duo H. R., Lei X. D., Chen X. Y., Wang X. J., Pu Y., Zou W. T. Individual tree biomass equations and growth models sensitive to climate variables for Larix spp. in China // Eur. J. For. Res. 2017. V. 136. N. 2. P. 233-249
  35. Zeng W., Chen X., Yang X. Developing national and regional individual tree biomass models and analyzing impact of climatic factors on biomass estimation for poplar plantations in China // Trees. 2021. V. 35. Iss. 4. P. 93-102

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».