ПОСТУПЛЕНИЕ ДРЕВЕСНОГО ОПАДА НА ПОВЕРХНОСТЬ ПОЧВЫ СРЕДНЕТАЕЖНЫХ СОСНЯКОВ НА ЕВРОПЕЙСКОМ СЕВЕРО-ВОСТОКЕ РОССИИ

Обложка

Цитировать

Полный текст

Аннотация

Растительный опад является связующим потоком между фитоценозом и почвой, а его разложение оказывает влияние на скорость накопления органического вещества в почве. Несмотря на большой фактический материал по массе опада в сосняках России, обобщенные оценки роли условий произрастания в этом процессе единичны. По итогам пятилетних наблюдений (2017-2022 гг.) установлена относительно постоянная скорость потока органического вещества от древесных растений на поверхность лесной подстилки, которая может изредка нарушаться вследствие значительного опада ветвей в зимний период. В среднем поступление опада в сосняке бруснично-лишайниковом составило 233.4 г/(м2 · год), черничном - 206.1, сфагновом - 109.6 г/(м2 · год), большая часть которого (66-72 %) формируется с мая по октябрь. В относительно чистых по составу насаждениях хвоя сосны ( Pinus L.) образует 48-62 % от общей массы опада. Существенный вклад также вносят ветви (12-16 %, преимущественно сосновые) и кора сосны (12-14 %). Выявлено, что условия произрастания влияют на долю хвои и шишек сосны, листьев березы ( Betula L.) в общем количестве древесного опада.

Об авторах

А. Ф. Осипов

Коми научный центр УрО РАН, Институт биологии

Email: osipov@ib.komisc.ru
Сыктывкар, Россия

Список литературы

  1. Безкоровайная И. Н., Егунова М. Н., Таскаева А. А. Почвенные беспозвоночные и их трофическая активность в 40-летних лесных культурах // Сиб. экол. журн. 2017. № 5. С. 609-620
  2. Бобкова К. С., Смоленцева Н. Л., Тужилкина В. В., Артемов В. А. Круговорот азота и зольных элементов в сосново-еловом насаждении средней тайги // Лесоведение. 1982. № 5. С. 3-11
  3. Брянин С. В., Абрамова Е. Р. Опад фитомассы в постпирогенных лиственничниках Зейского заповедника (Верхнее Приамурье) // Сиб. лесн. журн. 2017. № 2. С. 93-101
  4. Иванова Е. А., Лукина Н. В. Варьирование массы и фракционного состава древесного опада в сосняках кустарничково-лишайниковых при аэротехногенном загрязнении // Лесоведение. 2017. № 5. С. 47-58
  5. Кузнецова А. И. Влияние растительности на запасы почвенного углерода в лесах (обзор) // Вопр. лесн. науки. 2021. Т. 4. № 4. Ст. № 95. 54 с
  6. Никонов В. В. Почвообразование на северном пределе сосновых биогеоценозов. Л.: Наука. Ленингр. отд-ние, 1987. 142 с
  7. Никонов В. В., Лукина Н. В. Биогеохимические функции лесов на северном пределе распространения. Апатиты: Изд-во Карел. НЦ РАН, 1994. 315 с
  8. Обмен веществ и энергии в сосновых лесах Европейского Севера / Н. И. Казимиров, А. Д. Волков, С. С. Зябченко и др. Л.: Наука. Ленингр. отд-ние, 1977. 304 с
  9. Осипов А. Ф. Запасы и потоки органического углерода в экосистеме спелого сосняка черничного средней тайги // Сиб. лесн. журн. 2017. № 2. С. 70-80
  10. Осипов А. Ф., Бобкова К. С. Биологическая продуктивность и фиксация углерода среднетаежными сосняками при переходе из средневозрастных в спелые // Лесоведение. 2016. № 5. С. 346-354
  11. Прокушкин С. Г., Петренко А. Е., Зырянова О. А., Прокушкин А. С. Запасы фитодетрита и его биогенных элементов в лиственничниках малого водосборного бассейна Центральной Эвенкии // Сиб. лесн. журн. 2022. № 6. С. 34-44
  12. Синькевич С. М., Бахмет О. Н., Иванчиков А. А. Роль почв в региональном балансе углерода в сосновых лесах Карелии // Почвоведение. 2009. № 3. С. 290-300
  13. Трефилова О. В., Ведрова Э. Ф. Кузьмичев В. В. Годичный цикл углерода в зеленомошных сосняках Енисейской равнины // Лесоведение. 2011. № 1. С. 3-12
  14. Трефилова О. В., Ведрова Э. Ф. Минерализационный поток углерода в постпирогенных сосняках Среднего Енисея // Лесоведение. 2018. № 3. С. 210-224
  15. Чертов О. Г., Грабарник П. Я., Шанин В. Н., Быховец С. С., Петропавловский Б. С., Припутина И. В., Фролов П. В., Зубкова Е. В. Динамические модели наземных экосистем для количественной оценки продуктивности растительности // Раст. рес. 2019. Т. 55. № 2. С. 151-169
  16. Эколого-физиологические основы продуктивности сосновых лесов европейского Северо-Востока / К. С. Бобкова, В. В. Тужилкина, С. Н. Сенькина / Под ред. К. С. Бобковой. Сыктывкар, 1993. 176 с
  17. Berg B., Albrektson A., Berg M. P., Cortina J., Johansson M.-B., Gallardo A., Madeira M., Pausas J., Kriatz W., Vallejo R., McClaugherty C. Amounts of litter fall in some pine forests in a European transect, in particular Scots pine // Ann. For. Sci. 1999. V. 56. N. 8. P. 625-639
  18. Bezkorovaynaya I. N., Egunova M. N., Taskaeva A. A. Soil invertebrates and their trophic activity in 40-year-old forest stands // Contemp. Probl. Ecol. 2017. V. 10. N. 5. P. 524-533 (Original Rus. Text © I. N. Bezkorovaynaya, M. N. Egunova, A. A. Taskaeva, 2017, publ. in Sib. ekol. zhurn. 2017. N. 5. P. 609-620)
  19. Bhatti J. S., Jassal R. S. Long term aboveground litterfall production in boreal jack pine (Pinus banksiana) and black spruce (Picea mariana) stands along the Boreal Forest Transect Case Study in western central Canada // Ecoscience. 2014. V. 21. Iss. 3-4. P. 301-314
  20. Erkan N., Comez A., Aydin A. C., Denli O., Erkan S. Litterfall in relation to stand parameters and climatic factors in Pinus brutia forests in Turkey // Scand. J. For. Res. 2018. V. 33. Iss. 4. P. 338-346
  21. Jevon F. V., Polussa A., Lang A. K., Munger J. W., Wood S. A., Wieder W. R., Bradford M. A. Patterns and controls of aboveground litter inputs to temperate forests // Biogeochemistry. 2022. V. 161. Iss. 3. P. 335-352
  22. Komarov A. S., Shanin V. N.Comparative analysis of the influence of climate change and nitrogen deposition on carbon sequestration in forest ecosystems in European Russia: simulation modelling approach // Biogeosciences Discuss. 2012. V. 9. Iss. 6. P. 6829-6855
  23. Krishna M. P., Mohan M. Litter decomposition in forest ecosystems: a review // Energy, Ecol. and Environ. 2017. V. 2. N. 3. P. 236-249
  24. Kuzyakov Y., Blagodatskaya E. Microbial hotspots and hot moments in soil: concept & review // Soil Biol. Biochem. 2015. V. 83. P. 184-199
  25. Lehtonen A., Lindholm M., Hokkanen T., Salminen H., Jalkanen R. Testing dependence between growth and needle litterfall in Scots pine - a case study in northern Finland // Tree Physiol. 2008. V. 28. Iss. 11. P. 1741-1749
  26. Portillo-Estrada M., Korhonen J. F. J., Pihlatie M., Pumpanen J., Frumau A. K. F., Morillas L., Tosens T., Niinemets Ü.Interand intra-annual variations in canopy fine litterfall and carbon and nitrogen inputs to the forest floor in two European coniferous forests // Ann. For. Sci. 2013. V. 70. Iss. 4. P. 367-379
  27. Shen G., Chen D., Wu Y., Liu L., Liu C. Spatial patterns and estimates of global forest litterfall // Ecosphere. 2019. V. 10. Iss. 2. Article e02587
  28. Sin’kevich S. M., Bakhmet O. N., Ivanchikov A. A. The role of soils in the regional carbon budget of pine forests in Karelia // Euras. Soil Sci. 2009. V. 42. N. 3. P. 267-276 (Original Rus. Text © S. M. Sin’kevich, O. N. Bakhmet, A. A. Ivanchikov, 2009, publ. in Pochvovedenie. 2009. N. 3. P. 290-300)
  29. Starr M., Saarsalmi A., Hokkanen T., Merilä P., Helmisaari H.-S. Models of litterfall production for Scots pine (Pinus sylvestris L.) in Finland using stand, site and climate factors // For. Ecol. Manag. 2005. V. 205. Iss. 1-3. P. 215-225
  30. Ukonmaanaho L., Merilä P., Nöjd P., Nieminen T. M. Litterfall production and nutrient return to the forest floor in Scots pine and Norway spruce stands in Finland // Boreal Environ. Res. 2008. V. 13 (suppl. B). P. 67-91
  31. Uri V., Kukumägi M., Aosaar J., Varik M., Becker H., Aun K., Nikopensius M., Uri M., Buht M., Sepaste A., Padari A., Asi E., Sims A., Karoles K. Litterfall dynamics in Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and birch (Betula) stands in Estonia // For. Ecol. Manag. 2022. V. 520. Article 120417

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).