The assessment of the environmental hazard of isomers of 1,2,4-triazole phenolic derivatives for natural ecosystems

Cover Page

Cite item

Full Text

Abstract

It’s necessary to synthesize homologues of compounds frequently used in practice and to analyze their biological activity in laboratory experiments using screening tests that provide an integral assessment of biological responses to assess the effect of anthropogenic xenobiotics with different structures on ecosystems adjacent to agricultural complexes. We analyzed alcohol solutions of 2-(1H-1,2,4-triazolyl-methyl)phenol (ortho-isomer) and 4-(1H-1,2,4-triazolyl-methyl)phenol (para-isomer) in three concentrations: 0,0001; 0,001; 0.01 mg/ml using the Allium-test. The solvent was 0,1% isopropyl alcohol; the test object was Allium fistulosum L. The duration of the experiment was 5 days. Triazolide solutions significantly inhibited seed germination at all investigated concentrations. However, no significant differences were found between the isomers and the studied concentrations. Both isomers inhibited root growth at all concentrations tested. The toxicity of a triazolide containing an OH group in the para-position didn’t change over the selected concentration range. For its ortho-isomer, toxicity increased with increasing concentration, reaching the toxicity of its homologue at a dose of 0,01 mg/ml. Both tested compounds significantly inhibited the proliferation of meristem cells as compared to the control. At the same time, no differences were observed in the effect of homologues with the OH-group in the para- and ortho-position on the value of the mitotic index. However, we found a paradoxical reaction: both homologues showed maximum cytotoxicity at a minimum concentration of 0,0001 mg/ml, and cytotoxicity decreased with increasing concentration compared to control. A triazolid containing an OH group in the para-position caused a block at the metaphase and anaphase stages at the lowest concentration. The specificity of its action disappeared with an increase in concentration, which was expressed in a general prophase and metaphase block. Its ortho-isomer inhibited cell division at all concentrations at the prophase stage. Both compounds are mutagenic. The number of chromosomal aberrations depended on both the structure of the compounds and their concentration. The para-homologue is less mutagenic than ortho. In the ortho-homologue, mutagenicity decreased slightly with increasing concentration. The highest mutagenicity was found for the ortho-homologue at its lowest concentration. The paper discusses possible mechanisms of action of isomers and their negative impact on plant organisms in ecosystems.

About the authors

Ekaterina Sergeevna Selezneva

Samara National Research University

Author for correspondence.
Email: catana7@yandex.ru

candidate of biological sciences, associate professor of Biochemistry, Biotechnology and Bioengineering Department

Russian Federation, Samara

Zoya Petrovna Belousova

Samara National Research University

Email: zbelousova@mail.ru

doctor of chemical sciences, associate professor, professor of Inorganic Chemistry Department

Russian Federation, Samara

Robert Olegovich Artyukov

Samara National Research University

Email: artyukov_robert@outlook.com

master student of Biochemistry, Biotechnology and Bioengineering Department

Russian Federation, Samara

References

  1. Прусакова Л.Д., Чижова С.И. Применение производных триазола в растениеводстве // Агрохимия. 1998. № 10. С. 37–44.
  2. Прусакова Л.Д., Чижова С.И. Исследование в области физиологически-активных соединений // Агрохимия. 1999. № 9. С. 12–21.
  3. Fletcher R.A., Gill A., Davis T.D., Sankhla N. Triazoles as plant growth regulators and stress protectants // Horticultural Reviews. 2000. Vol. 24. P. 55–138.
  4. Попов С.Я., Дорожкина Л.А., Калинин В.А. Основы химической защиты растений. М.: АртЛион, 2003. 208 с.
  5. Byamukama E., Ali S., Kleinjan J., Yabwalo D.N., Graham Ch., Caffe-Treml M., Mueller N.D., Ricrertsen J., Berzonsky W.A. Winter wheat grain yield response to fungicide application is influenced by cultivar and rainfall // Plant Pathology Journal. 2019. Vol. 35, № 1. P. 63–70.
  6. Steinbach H.S., Benech-Arnold R.L., Sanchez R.A. Hormonal regulation of dormancy in developing sorghum seeds // Plant Physiology. 1997. Vol. 113, № 1. P. 149–154.
  7. Прусакова Л.Д., Чижова С.И., Павлова В.В. Оценка ретардантной активности триазолов в α-амилазном тесте на эндосперме ярового ячменя // Физиология растений. 2004. Т. 5, № 4. С. 626–630.
  8. Soumya P.R., Kumar P., Madan P.S. Paclobutrazol: a novel plant growth regulator and multi-stress ameliorant // Indian Journal of Plant Physiology. 2017. Vol. 22 (3). P. 267–278.
  9. Руководство по краткосрочным тестам для выявления мутагенных и канцерогенных химических веществ // Гигиенические критерии состояния окружающей среды. Всемирная организация здравоохранения. Женева, 1989. № 51. 212 с.
  10. Прохорова И.М., Фомичёва П.Н., Ковалёва М.И. Оценка митотоксического и мутагенного действия факторов окружающей среды: Методические указания. Ярославль: ЯрГУ, 2003. 140 с.
  11. Песня Д.С., Серов Д.А., Вакорин С.А., Прохорова И.М. Исследование токсического, митозмодифицирующего и мутагенного действия борщевика Сосновского // Ярославский педагогический вестник (Естественные науки). 2011. Т. III, № 4. С. 93–98.
  12. Лакин Г.Ф. Биометрия. М.: Высшая школа, 1990. 352 с.
  13. Bernardes P.M., Andrade-Vieira L.F., Aragão F.B., Ferreira A., da Silva Ferreira M.F. Toxicity of difenoconazole and tebuconazole in Allium cepa // Water Air and Soil Pollution. 2015. Vol. 226. P. 207.
  14. Moreyra L.D., Garanzini D.S., Medici S., Menone M.L. Evaluation of growth, photosynthetic pigments and genotoxicity in the wetland macrophyte Bidens laevis exposed to tebuconazole // Bulletin of Environmental Contamination and Toxicology. 2019. Vol. 102, № 3. P. 353–357.
  15. Haughan P.A., Lenton J.R., Goad L.J. Sterol requirements and paclobutrazol inhibition of celery cell culture // Phytochemistry. 1988. Vol. 27, № 8. P. 2491–2500.
  16. Kende H., Zeevaart J. The five «classical» plant hormones // The Plant Cell. 1997. Vol. 9, № 7. P. 1197–1210.
  17. Hradilík J., Fišerová H. Interakce mezi giberelinem (GA3) a paclobutrazolem (PP 333) u salátu, hrachu a lnu // Acta Universitatis Agriculturae. (Brno). Facultas agronomica. 1986. Vol. 35. № 4. P. 5–11.
  18. Lucangeli C.D., Bottini R. Effects of Azospirillum spp. on endogenous gibberellin content and growth of maize (Zea mays L.) treated with uniconazole // Symbiosis. 1997. Vol. 23, № 1. P. 63–72.
  19. Запрометов М.Н. Фенольные соединения растений и их биосинтез. М.: ВИНИТИ, 1988. Т. 27. 188 с.
  20. Коношина С.М., Хилкова Н.Л., Прудникова Е.Г. Роль фенольных соединений древесных растений в формировании биоценоза // Вклад современных молодых ученых в науку будущего: междунар. молодеж. мультидисц. науч.-практ. конф. Ростов-на-Дону: Международный исследовательский центр «Научное сотрудничество», 2015. С. 62–66.
  21. Криштопенко С.В., Тихов М.С., Попова Е.Б. Парадоксальная токсичность. Нижний Новгород: Издательство Нижегородской государственной медицинской академии, 2001. 163 с.
  22. Точилкина Л.П. Феномен сверхмалых доз, гомеопатия и ФОВ // Химическая и биологическая безопасность. 2007. № 1 (31). С. 4–14.
  23. Генераленко Н.Ю., Крюкова Л.Ю., Пушкин И.А. Эффекты малых и сверхмалых доз биологически активных веществ // Научные и образовательные проблемы гражданской защиты. 2010. № 3. С. 6–7.
  24. Селезнева Е.С., Теньгаев Е.И. К вопросу об использовании в мониторинге ксенобиотков // Известия Самарского научного центра Российской академии наук. 2010. Т. 12, № 1 (4). С. 1149–1152.
  25. Алов И.А. Цитофизиология и патология митоза. М.: Медицина, 1972. 264 с.
  26. Смирнова Е.А. Организация митотического веретена в клетках высших растений // Физиология растений. 1998. Т. 45, № 2. С. 198–207.
  27. Кефели В.И. Природные ингибиторы роста // Физиология растений. 1997. Т. 44. С. 471–480.
  28. Газарян И.Г., Хушпульян Д.М., Тишков В.И. Особенности структуры и механизма действия пероксидаз растений // Успехи биологической химии. 2006. Т. 46. С. 303–322.
  29. Кулуев Б.Р. Регуляторы деления и пролиферации клеток в растениях // Биохимия. 2017. Т. 9, № 2. С. 119–135.
  30. Захаренко В.А. Экономическая целесообразность системы защиты зерновых культур в России // Достижения науки и техники АПК. 2018. Т. 32, № 7. С. 5–8.
  31. Куценко С.А. Основы токсикологии. СПб.: Фолиант, 2004. 715 с.
  32. Захаренко В.А. Научное обеспечение производства, рынка и реализации пестицидов в аграрном секторе Российской Федерации // Агрохимия. 2014. № 4. С. 3–19.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1 - Influence of 2- and 4- (1H-1,2,4-triazolyl-methyl-phenols on seed germination of A. fistulosum

Download (30KB)
3. Figure 2 - Effect of 2- and 4- (1H-1,2,4-triazolyl-methyl) phenols on the average root length of A. fistulosum on the fifth day of growth

Download (26KB)
4. Figure 3 - Influence of 2- and 4- (1H-1,2,4-triazolyl-methyl) phenols on the value of the mitotic index of cells of the root meristem of A. fistulosum

Download (17KB)
5. Figure 4 - Influence of 2- and 4- (1H-1,2,4-triazolyl-methyl) phenols on the relative duration of mitotic phases of A. fistulosum root meristem cells

Download (13KB)
6. Figure 5 - Mutagenicity of the studied 2- and 4- (1H-1,2,4-triazolyl-methyl) phenols for A. fistulosum

Download (23KB)

Copyright (c) 2021 Selezneva E.S., Belousova Z.P., Artyukov R.O.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies