The study of primary productivity of lichenized epigeic fungi in the pine forests of the Kostroma Region

Cover Page

Cite item

Full Text

Abstract

Thalli of epigeic lichenized fungi of the genus Cladonia P. Browne are sources of high biological activity substances with a proven pharmaceutical potential. It’s necessary to study characteristics of the accumulation of biomass by thalli, as well as conditions affecting the accumulation of secondary metabolites by lesions. For the first time, studies of the primary productivity and concentrations of secondary metabolites in lichens of the genus Cladonia in pine forests in the center of the European part of Russia are presented on the example of the Kostroma Region. The primary productivity of bushy lichens of the genus Cladonia in the pine forests of the Kostroma Region is in the range of 16,05–34,72 g/m² per year for C. arbuscula and 14,70–28,18 g/m² per year for C. rangiferina. The weight gain of the living part of the subset is in direct proportion to the intensity of sunlight: the optimum for C. arbuscula is 4100–6100 lx (0,0250 g/year), for C. rangiferina it is 3800–5800 lx (0,0407 g/year). The influence of abiotic factors (biotope humidity and sunlight intensity) on the parameters of primary productivity and the accumulation of secondary metabolites by thalli was revealed. The influence of biotic factors is manifested on the projective cover of species. The highest values of the projective cover, 85,67% (C. arbuscula) and 61% (C. rangiferina), are confined to well-illuminated biotopes with rarefied sunlight (thin sphagnum pine forest, sphagnum-heather pine forest slope). The maximum amount of acetone extract of secondary metabolites per weight of air-dry raw material of lichenized fungi of the genus Cladonia was isolated from well-illuminated areas of pine forests at 5800–7400 lx (11,541 and 15,916 mg/g q.s. of C. rangiferina and C. arbuscula raw materials, respectively). The increased humidity of the biotope and shading conditions slow down the accumulation of secondary metabolites in the subsets.

About the authors

Ksenia Vyacheslavovna Malakhova

Kostroma State University

Author for correspondence.
Email: malakhova.kv1@gmail.com

postgraduate student of Biology and Ecology Department

Russian Federation, Kostroma

References

  1. Соколов Д.Н., Лузина О.А., Салахутдинов Н.Ф. Усниновая кислота: получение, строение, свойства и химические превращения // Успехи химии. 2012. Т. 81, № 8. С. 747–768.
  2. Андреев М.П., Ахти Т., Войцехович А.А., Гагарина Л.В., Гимельбрант Д.Е., Давыдов Е.А., Конорева Л.А., Кузнецова Е.С., Макрый Т.В., Надеина О.В., Рандлане Т., Сааг А., Степанчикова И.С., Урбанавичюс Г.П. Флора лишайников России. Биология, экология, разнообразие, распространение и методы изучения лишайников: монография. М.: ООО «Товарищество научных изданий КМК», 2014. 392 с.
  3. Luzina O., Salakhutdinov N. Biological activity of usnic acid and its derivatives: Part 1. Activity against unicellular organisms // Russian Journal of Bioorganic Chemistry. 2016. № 42. P. 115–132. doi: 10.1134/S1068162016020084.
  4. Ivanova V., Backor M., Dahse H.-M., Graefe U. Molecular structural studies of lichen substances with antimicrobial, antiproliferative, and cytotoxic effects from Parmelia subrudecta // Preparative Biochemistry & Biotechnoogyl. 2010. № 40. P. 377–388.
  5. Maciag-Dorszyńska M., Wegrzyn G., Guzow-Krzemińska B. Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis // FEMS microbiology letters. 2014. № 353. P. 57–62. doi: 10.1111/1574-6968.12409.
  6. De Oliveira D.M., Pereira C., Mendes G., Junker J., Kolloff M., Rosa L., Rosa C., Alves T., Zani C., Johann S., Cota B. Two new usnic acid derivatives from the endophytic fungus Mycosphaerella sp. // Zeitschrift für Naturforschung. 2018. № 73 (11–12). P. 449–455. doi: 10.1515/znc-2017-0162.
  7. Прокопьев И.А., Порядина Л.Н., Филиппова Г.В., Шеин А.А. Содержание вторичных метаболитов в лишайниках сосновых лесов Центральной Якутии // Химия растительного сырья. 2016. № 3. С. 73–78.
  8. McMullin R., Rapai S. A review of reindeer lichen (Cladonia subgenus Cladina) linear growth rates // Rangifer. 2020. № 40. P. 15–26. doi: 10.7557/2.40.1.4636.
  9. Fahselt D. Lichen Products of Cladonia stellaris and C. rangiferina maintained under Artificial conditions // The Lichenologist. 1981. № 13 (1). P. 87–91. doi: 10.1017/S002428298100008X.
  10. Абдульманова С.Ю., Эктова С.Н. Ростовые процессы некоторых видов кустисто-разветвленных лишайников рода Cladonia (Cladoniaceae) в тундровых сообществах // Растительные ресурсы. 2015. Вып. 3. С. 344–356.
  11. Вершинина С.Э., Вершинин К.Е. Оценка запасов и характеристика лишайникового сырья р. Cetraria Ach., 1803 в Прибайкалье // Вестник ИрГСХА. 2010. № 40. С. 43–49.
  12. Полежаев А.Н. Рост и распространение кустистых лишайников на севере Дальнего Востока России // Вестник северо-восточного научного центра ДВО РАН. 2005. № 2. С. 56–63.
  13. Толпышева Т.Ю., Тимофеева А.К. Влияние субстрата на рост и размножение лишайников Cladonia rangiferina и C. mitis // Вестник Московского университета. Серия 16: Биология. 2008. № 4. С. 34–41.
  14. Абдульманова С.Ю., Эктова С.Н. Соотношение прироста по высоте и биомассе у кустистых лишайников // Известия Самарского научного центра РАН. 2013. Т. 15, № 3 (2). С. 688–691.
  15. Vasander H. The length growth rate, biomass and production of Cladonia arbuscula and C. rangiferina in a raised bog in southern Finland // Annales Botanici Fennici. 1981. Vol. 18, № 3. P. 237–243. doi: 10.2307/23725238.
  16. Prince C. Growth rates and productivity of Cladonia arbuscula and Cladonia impexa on the Sands of Forvie, Scotland // Canadian Journal of Botany. 2011. № 52. P. 431–433. doi: 10.1139/b74-055.
  17. Scotter G. Growth rates of Cladonia alpestris, C. mitis, and C. rangiferina in the Taltson River region, NWT // Canadian Journal of Botany. 2011. № 41. P. 1199–1202. doi: 10.1139/b63-100.
  18. Nybakken L., Julkunen-Tiitto R. UV-B induces usnic acid in reindeer lichens // The Lichenologist. 2006. № 38. P. 477–485. doi: 10.1017/S0024282906005883.
  19. Prokopiev I., Poryadina L., Konoreva L., Chesnokov S., Shavarda A. Variation in the Composition of Secondary Metabolites in Flavocetraria Lichens from Western Siberia // Russian Journal of Ecology. 2018. № 49. P. 401–405. doi: 10.1134/S1067413618050107.
  20. Chowdhury D., Solhaug K.A., Gauslaa Y. Ultraviolet radiation reduces lichen growth rates // Symbiosis. 2017. № 73. P. 27–34. doi: 10.1007/s13199-016-0468-x.
  21. Урбанавичюс Г.П. Список лихенофлоры России. СПб.: Наука, 2010. 194 с.
  22. Храмченкова О.М. Лишайники Hypogymnia physodes, Evernia prunastri, Cladonia arbuscula и Xanthoria parietina как источники веществ с антибактериальной активностью // Бюллетень Брянского отделения Русского ботанического общества. 2017. № 1 (9). С. 50–58.

Copyright (c) 2021 Malakhova K.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies