Mathematical modeling skills development among students of universities of economics

Cover Page

Cite item

Full Text

Abstract

This paper discusses approaches to economic and mathematical modeling skills development among students of universities of economics. The need for this competency among specialists in the digital economy is shown. The motivation of the student – the future specialist in the digital economy in mastering the basic techniques of economic processes and systems modeling – is outlined. The sections of the school course in mathematics are given, which are the basis for the development of these skills. Mathematical courses are examined; their study is considered to be the foundation for the development of the competence in economic processes modeling. The author describes the main types of mathematical models that are studied at the present stage at universities of economics and are widely used in the digital economy. The author also presents a classification of the models used in the educational process while studying mathematical courses. The main requirements for economic-mathematical models are discussed and substantiated. The author has listed necessary requirements for teachers of mathematical departments of universities. These requirements can help them to teach basic mathematics and its applied sections (e.g. mathematical modeling) to students successfully. The main conclusions and results of the study can be used in the practical work of teachers of mathematical departments at universities of economics when creating electronic teaching aids of economic and mathematical modeling and methods of their application in the educational process.

About the authors

Sergey I. Makarov

Samara State University of Economics

Author for correspondence.
Email: matmaksi@yandex.ru

doctor of pedagogical sciences, professor, head of Higher Mathematics and Economic-Mathematical Methods Department

Russian Federation, Samara

References

  1. Абросимов А.Г., Макаров С.И., Репин О.А., Печерская Э.П., Бердников В.А. и др. Конкурентоспособность высшего учебного заведения в образовательном пространстве региона (коллективная монография). Самара: Изд-во Самар. гос. экон. акад., 2004. 298 с.
  2. Георгиева Т.С. Высшая школа США на современном этапе. М.: Высшая школа, 1989. 142 с.
  3. Саморуков Б.Е., Тихомиров С.А. Многоуровневое образование: проблемы, сущность, перспективы // Актуальные проблемы развития высшей школы. Переход к многоуровневому образованию: межвуз. сб. науч. тр. СПб.: ЛТА, 1993. С. 15–19.
  4. Муравьева А.А., Олейникова О.Н. Профессиональные стандарты: принципы формирования, назначение и структура: методическое пособие. М.: АНО Центр ИРПО, 2011. 100 с.
  5. Зимняя И.А. Ключевые компетенции – новая парадигма результата образования // Высшее образование сегодня. 2003. № 5. С. 34–42.
  6. Makarov S.I., Sevastyanova S.A. Information modeling of the students' residual knowledge level // Digital Transformation of the Economy: Challenges, Trends and New Opportunities / eds. S. Ashmarina, A. Mesquita, M. Vochozka. Vol. 908. Springer, Cham, 2020. P. 502–509.
  7. Клейнер Г.Б. Экономико-математическое моделирование и экономическая теория // Экономика и математические методы. 2001. Т. 37, № 3. С. 111–127.
  8. Садовская Т.Г., Дроговоз П.А., Дадонов В.А., Мельников В.И. Применение математических методов и моделей в управлении организационно-экономическими факторами конкурентоспособности промышленного предприятия // Аудит и финансовый анализ. 2009. № 3. С. 364–379.
  9. Чернышев С.Л. Моделирование экономических систем и прогнозирование их развития: учебник. М.: Изд-во МГТУ им. Н.Э. Баумана, 2003. 232 с.
  10. Об утверждении программы «Цифровая экономика Российской Федерации»: распоряжение Правительства РФ от 28.07.2017 № 1632-р // Собрание законодательства Российской Федерации. № 32, 07.08.2017, ст. 5138.
  11. Patel A. A Conceptual framework for Internet based intelligent tutoring systems // Knowledge transfer / ed. A. Behrooz. Vol. 2. London, 2000. P. 117–124.
  12. Блинов В.И., Есенина Е.Ю., Клинк О.Ф., Куртеева Л.Н., Сатдыков А.И., Факторович А.А. Профессиональные стандарты: от идеи к практике / под общ. ред. В.И. Блинова. Lap Lambert Academic Publishing, 2017. 80 с.
  13. Ситаров В.А. Содержание образования в контексте личностного измерения вузовской подготовки // Знание. Понимание. Умение. 2012. № 4. С. 234–241.
  14. Цифровизация как приоритетное направление модернизации российского образования / под ред. Н.В. Горбуновой. Саратов: Саратовский социально-экономический институт (филиал) РЭУ им. Г.В. Плеханова. 2019. 152 с.
  15. Об утверждении и введении в действие федерального государственного образовательного стандарта высшего профессионального образования по направлению подготовки 080100 Экономика (квалификация (степень) «бакалавр»): приказ Министерства образования и науки Российской Федерации от 21 декабря 2009 года № 747 // Бюллетень нормативных актов федеральных органов исполнительной власти, № 14, 05.04.2010.
  16. Сластенин В.А. Личностно-ориентированные технологии профессионально-педагогического образования // Сибирский педагогический журнал. 2008. № 1. С. 49–74.
  17. Григорьев С.Г., Гриншкун В.В., Демкин В.П., Краснова Г.А., Макаров С.И., Роберт И.В. Концепция образовательных электронных изданий и ресурсов – шаг на пути к качественному образованию // Информационные технологии в образовании: сб. тр. междунар. конф.-выставки «ИТО-2002». Ч. 6: Пленарные доклады. М.: МИФИ, 2002. С. 11–14.
  18. Константинова Л.В. Теоретические основы социальной политики: учебное пособие. Саратов: Поволжский институт им. П.А. Столыпина, 2011. 75 с.
  19. Сенашенко В., Ткач Г. О структуре современного высшего образования // Высшее образование в России. 2004. № 4. С. 18–26.
  20. Ткач Г.Ф., Филиппов В.М., Чистохвалов В.Н. Тенденции развития и реформы образования в мире: учебное пособие. М.: РУДН, 2008. 303 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Makarov S.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».