The concentration of pollen from cereals and sedges in the atmosphere during the flowering of plants
- Authors: Zueva G.A.1, Golovko V.V.2
-
Affiliations:
- Central Siberian Botanical Garden of Siberian Branch of the Russian Academy of Sciences
- Voevodsky Institute of Chemical Kinetics and Combustion of Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 13, No 3 (2024)
- Pages: 26-30
- Section: Biological Sciences
- URL: https://journals.rcsi.science/2309-4370/article/view/280739
- DOI: https://doi.org/10.55355/snv2024133104
- ID: 280739
Cite item
Full Text
Abstract
The pollen atmospheric pollen supply of 11 species of grasses of the family Poaceae Barnh. (=Gramineae Juss.) and 5 species of sedges of the family Cyperáceae Juss. was investigated. The studied plants grow in the collection of «Lawn and ornamental grasses» of the Laboratory of Introduction of Ornamental Plants, Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences (CSBS SB RAS). They are actively used as components of lawn cultures and represent the group of ornamental grasses and sedges. Being dominants of natural plant communities, they produce a huge amount of pollen, which is one of the main sources of allergic diseases, causing seasonal pollinosis. Pollenization, distribution and particle transport rate depend on pollen composition. The relevance of studying this issue attracts not only allergologists, but also botanical scientists. As a result, we investigated the composition of pollen of cereal and sedge plants for the presence of clusters and determined the shares of clusters and individual pollen grains from the total number of pollen particles entering the atmosphere during flowering of plants. Our studies showed that pollen clusters are present in all analyzed samples. Experimental analysis of cereal pollen composition showed that the proportion of clusters can vary from 11,5% in Arrhenatherum elatius to 35,4% in Panicum capillare. Meanwhile, the proportion of pollen grains in these species ranges from 28,2% to 67,6% of total pollen particles, respectively (836; 1086). As for the studied sedge species, the cluster composition can vary from a minimum value of 28,6% in Carex vesicaria to a maximum of 67,9% in Carex altaica. and the proportion of pollen grains varies from 52,7% to 90,8% of all pollen particles (760; 467).
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Galina Alexandrovna Zueva
Central Siberian Botanical Garden of Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: zuevagalina70@yandex.ru
candidate of biological sciences, senior researcher of Ornamental Plants Introduction Laboratory
Russian Federation, NovosibirskVladimir Viktorovich Golovko
Voevodsky Institute of Chemical Kinetics and Combustion of Siberian Branch of the Russian Academy of Sciences
Email: golovko@kinetics.nsc.ru
candidate of biological sciences, engineer of Dispersed Systems Laboratory
Russian Federation, NovosibirskReferences
- Флора Сибири. Т. 2. Poaceae (Gramineae) / сост. Г.А. Пешкова, О.Д. Никифорова, М.Н. Ломоносова и др. Новосибирск: Наука. Сиб. отд-ние, 1990. 361 с.
- Флора Сибири. Т. 3. Cyperaceae / сост. Л.И. Малышев, С.А. Тимохина, С.В. Бубнова. Новосибирск: Наука. Сиб. отд-ние, 1990. 280 с.
- Després V.R., Huffman J.A., Burrows S.M., Hoose C., Safatov A.S., Buryak G., Fröhlich-Nowoisky J., Elbert W., Andreae M.O., Pöschl U., Jaenicke R. Primary biological aerosol particles in the atmosphere: a review // Tellus B: Chemical and Physical Meteorology. 2012. Vol. 64. doi: 10.3402/tellusb.v64i0.15598.
- D'Amato M., Vitale C., Molino A., Mormile M., Vatrella A., Sanduzzi A., D'Amato G. Pollen allergy, asthma and climate change // International Journal of Immunorehabilitation. 2018. Vol. 20, № 1. P. 5–9.
- Астафьева Н.Г., Удовиченко Е.Н., Гамова И.В., Перфилова И.А., Кобзев Д.Ю. Пыльцевая аллергия в Саратовской области // Российский аллергологический журнал. 2010. № 1. С. 17–25.
- Lake I.R., Jones N.R., Agnew M., Goodess C.M., Giorgi F., Hamaoui-Laguel L., Semenov M.A., Solomon F., Storkey J., Vautard R., Epstein M.M. Climate change and future pollen allergy in Europe // Environmental Health Perspectives. 2017. Vol. 125, iss. № 3. P. 385–391. doi: 10.1289/ehp173.
- Han S.M., Won O.J., Hwang K.S., Suh S.J., Park K.W., Lee B., Kim C.-G. Gene flow from herbicide resistant genetically modified rice to conventional rice (Oryza sativa L.) cultivars // Journal of Ecology and Environment. 2015. Vol. 38, iss. 4. P. 397–403. doi: 10.5141/ecoenv.2015.042.
- Jackson S.T., Lyford M.E. Pollen dispersal models in Quaternary plant ecology: Assumptions, parameters, and prescriptions // The Botanical Review. 1999. Vol. 65, № 1. P. 39–75. doi: 10.1007/bf02856557.
- Erdtman G. Handbook of palynology. Morphology, taxonomy, ecology. An introduction to the study of pollen grains and spores. New York, 1969. 486 p.
- Головко В.В., Куценогий К.П., Истомин В.Л. Счетные и массовые концентрации пыльцевой компоненты атмосферного аэрозоля в окрестностях г. Новосибирска в период цветения древесных растений // Оптика атмосферы и океана. 2015. Т. 28, № 6. С. 529–533. doi: 10.15372/aoo20150605.
- Принципы и методы аэропалинологических исследований / под ред. Н.Р. Мейер-Меликян, Е.Э. Северовой. М., 1999. 48 с.
- Ненашева Г.И., Репин Н.В., Репина К.Н. Прикладные аспекты аэрополинологических исследований на примере Алтайского края // Известия Алтайского государственного университета. 2011. № 3–1 (71). С. 84–87.
- Allergy service guide in Europe / eds.: S. Nilsson, F.Th.M. Spieksma. Stockholm, 1994. 123 p.
- Pohl D. Die Pollenerzeugung der Windblütler. Eine vergleichende Untersuchung mil Ausblicken auf die Bestaubung der tierblütigen Gewächse un die pollenanalytische Waldgeschichte // Zur Morphologie und Biologie des Pollen. 1937. Vol. 56. P. 365–470.
- Culley T.M., Weller S.G., Sakai A.K. The evolution of wind pollination in angiosperms // Trends in Ecology and Evolution. 2002. Vol. 17, iss. 8. P. 361–369. doi: 10.1016/s0169-5347(02)02540-5.
- Jackson S.T., Lyford M.E. Pollen dispersal models in Quaternary plant ecology: Assumptions, parameters, and prescriptions // The Botanical Review. 1999. Vol. 65, iss. 1. P. 39–74. doi: 10.1007/bf02856557.
- Harrington J.B., Metzger K. Ragweed pollen density // American Journal of Botany. 1963. Vol. 50, iss. 6. P. 532–539. doi: 10.1002/j.1537-2197.1963.tb07226.x.
- Ogden E.C., Hayes J.V., Raynor G.S. Diurnal patterns of pollen emission in Ambrosia, Phleum, Zea, and Ricinus // American Journal of Botany. 1969. Vol. 56, iss. 1. P. 16–21. doi: 10.1002/j.1537-2197.1969.tb07500.x.
- Головко В.В., Беланова А.П., Зуева Г.А. Исследование кластерного состава пыльцевых частиц, поступающих в атмосферу во время цветения анемофильных растений // Оптика атмосферы и океана. 2019. Т. 32, № 6. С. 476–481. doi: 10.15372/aoo20190610.
- Després V.R., Huffman J.A., Burrows S.M., Hoose C., Safatov A.S., Buryak G., Fröhlich-Nowoisky J., Elbert W., Andreae M.O., Pöschl U. Jaenicke R. Primary biological aerosol particles in the atmosphere: a review // Tellus B: Chemical and Physical Meteorology. 2012. Vol. 64, iss. 1. doi: 10.3402/tellusb.v64i0.15598.
- Zueva G.A., Golovko V.V. Diversity of grasses as producers of atmospheric aerosol pollen component // Bio Web of Conferences. 2020. Vol. 24. doi: 10.1051/bioconf/20202400101.
Supplementary files
