The effect of copper ions on submerged hornwort (Ceratophyllum demersum L.)
- Authors: Bochka V.V.1, Grigoriev Y.S.1, Sorokina G.A.1, Kornyakova K.I.1
-
Affiliations:
- Siberian Federal University
- Issue: Vol 13, No 3 (2024)
- Pages: 8-13
- Section: Biological Sciences
- URL: https://journals.rcsi.science/2309-4370/article/view/280736
- DOI: https://doi.org/10.55355/snv2024133101
- ID: 280736
Cite item
Full Text
Abstract
This article presents the results of a study of the effect of copper ions at concentrations of 0,01–0,16 mg/dm³ in laboratory conditions on the stability of the highest aquatic plant, the submerged hornwort. Despite the fact that copper is a biophilic element, all the studied ion concentrations of this element had a negative effect on plant weight gain and the value of the relative parameter of delayed chlorophyll fluorescence already on the first day of exposure. During a seven-day toxicological experiment, the suppression of plant growth when exposed to a toxicant increased. The greatest decrease in the relative parameter of delayed fluorescence compared with the control in all studied concentrations of copper ions was observed on the first day of the experiment. However, after a long period of stay of the hornwort in a toxic environment, its partial adaptation occurs, as a result of which some parts of this plant retain photosynthetic activity. It was found that plants retain their viability up to a concentration of 0,02 mg/dm³ corresponding to 20 MPC in the waters of fisheries facilities. Concentrations of 0,04 mg/dm³ and higher already on the first day led to the loss of leaves. The plant's resistance to the action of copper ions allows it to be considered as a potential phytoremediant of waters contaminated with compounds of this element.
Full Text
##article.viewOnOriginalSite##About the authors
Valeriya Viacheslavovna Bochka
Siberian Federal University
Author for correspondence.
Email: vbochka@sfu-kras.ru
postgraduate student of Ecology and Environmental Management Department
Russian Federation, KrasnoyarskYuri Sergeevich Grigoriev
Siberian Federal University
Email: gr2897@gmail.com
candidate of biological sciences, professor of Ecology and Environmental Management Department
Russian Federation, KrasnoyarskGalina Alexandrovna Sorokina
Siberian Federal University
Email: sorokina_gas@mail.ru
candidate of biological sciences, associate professor of Ecology and Environmental Management Department
Russian Federation, KrasnoyarskKarina Ilyasovna Kornyakova
Siberian Federal University
Email: kkornyakova-eb19@stud.sfu-kras.ru
master student of Ecology and Environmental Management Department
Russian Federation, KrasnoyarskReferences
- Галиулин Р.В., Галиулина Р.А., Кочуров Б.И. Аккумуляция тяжелых металлов водными растениями при техногенезе // Теоретическая и прикладная экология. 2013. № 2. С. 81–85.
- Титов А.Ф., Таланова В.В., Казнина Н.М., Лайдинен Г.Ф. Устойчивость растений к тяжелым металлам / отв. ред. Н.Н. Немова. Петрозаводск: Карельский научный центр РАН, 2007. 172 с.
- Shabbir Z., Sardar A., Shabbir A., Abbas G., Shamshad S., Khalid S., Murtaza G., Dumat C., Shahid M. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment // Chemosphere. 2020. Vol. 259. doi: 10.1016/j.chemosphere.2020.127436.
- Ali H., Khan E., Sajad M.A. Phytoremediation of heavy metals – concepts and applications // Chemosphere. 2013. Vol. 91, iss. 7. P. 869–881. doi: 10.1016/j.chemosphere.2013.01.075.
- Об утверждении нормативов качества воды водных объектов рыбохозяйственного значения, в том числе нормативов предельно допустимых концентраций вредных веществ в водах водных объектов рыбохозяйственного значения [Электронный ресурс] // Гарант.ру. https://base.garant.ru/71586774.
- Государственный доклад «О состоянии и охране окружающей среды в Красноярском крае в 2023 году». Красноярск, 2024. 386 с.
- Garcia L., Welchen E., Gonzalez D.H. Mitochondria and copper homeostasis in plants // Mitochondrion. 2014. Vol. 19, part B. P. 269–274. doi: 10.1016/j.mito.2014.02.011.
- Printz B., Lutts S., Hausman J.-F., Sergeant K. Copper trafficking in plants and its implication on cell wall dynamics // Frontiers in Plant Science. 2016. Vol. 7. doi: 10.3389/fpls.2016.00601.
- Thomas G., Stärk H.-J., Wellenreuther G., Dickinson B.C., Küpper H. Effects of nanomolar copper on water plants – comparison of biochemical and biophysical mechanisms of deficiency and sublethal toxicity under environmentally relevant conditions // Aquatic Toxicology. 2013. Vol. 140–141. P. 27–36. doi: 10.1016/j.aquatox.2013.05.008.
- Constabel C.P., Barbehenn R. Defensive roles of polyphenol oxidase in plants // Induced Plant Resistance to Herbivory. Dordrecht: Springer, 2008. P. 253–270. doi: 10.1007/978-1-4020-8182-8_12.
- Tavladoraki P., Cona A., Angelini R. Copper-containing amine oxidases and FAD-dependent polyamine oxidases are key players in plant tissue differentiation and organ development // Frontiers in Plant Science. 2016. Vol. 7. doi: 10.3389/fpls.2016.00824.
- Krayem M., El Khatib S., Hassan Y., Deluchat V., Labrousse P. In search for potential biomarkers of copper stress in aquatic plants // Aquatic toxicology. 2021. Vol. 239. doi: 10.1016/j.aquatox.2021.105952.
- Волков К.С., Иванова Е.М., Великсар С.Г., Куликова А.Л., Кузнецова Н.А., Холодова В.П., Кузнецов В.В. Возможности использования растений различных семейств в целях фиторемедиации загрязненных медью территорий // Проблемы региональной экологии. 2013. № 1. С. 97–101.
- Küpper H., Šetlík I., Spiller M., Küpper F.C., Prášil O. Heavy metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation // Journal of Phycology. 2002. Vol. 38, iss. 3. P. 429–441. doi: 10.1046/j.1529-8817.2002.01148.x.
- Rehman A.U., Nazir S., Irshad R., Tahir K., Rehman K.U., Islam R.U., Wahab Z. Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles // Journal of Molecular Liquids. 2021. Vol. 321. doi: 10.1016/j.molliq.2020.114455.
- Rai S., Singh P.K., Mankotia S., Swain J., Satbhai S.B. Iron homeostasis in plants and its crosstalk with copper, zinc, and manganese // Plant Stress. 2021. Vol. 1. doi: 10.1016/j.stress.2021.100008.
- Thomas G., Andresen E., Mattusch J., Hubácek T., Küpper H. Deficiency and toxicity of nanomolar copper in low irradiance – a physiological and metalloproteomic study in the aquatic plant Ceratophyllum demersum // Aquatic Toxicology. 2016. Vol. 177. P. 226–236. doi: 10.1016/j.aquatox.2016.05.016.
- Prasad M.N.V. Aquatic plants for phytotechnology // Environmental Bioremediation Technologies. Berlin–Heidelberg: Springer, 2007. P. 259–274. doi: 10.1007/978-3-540-34793-4_11.
- Kafle A., Timilsina A., Gautam A., Adhikari K., Bhattarai A., Aryal N. Phytoremediation: mechanisms, plant selection and enhancement by natural and synthetic agents // Environmental Advances. 2022. Vol. 8. doi: 10.1016/j.envadv.2022.100203.
- Matache M.L., Marin C., Rozylowicz L., Tudorache A. Plants accumulating heavy metals in the Danube River wetlands // Journal of Environmental Health Science and Engineering. 2013. Vol. 11. doi: 10.1186/2052-336x-11-39.
- Parnian A., Chorom M., Jaafarzadeh N., Dinarvand M. Use of two aquatic macrophytes for the removal of heavy metals from synthetic medium // Ecohydrology & Hydrobiology. 2016. Vol. 16, iss. 3. P. 194–200. doi: 10.1016/j.ecohyd.2016.07.001.
- Kastratović V., Krivokapić S., Bigović M., Đurović D., Blagojević N. Bioaccumulation and translocation of heavy metals by Ceratophyllum demersum from the Skadar Lake, Montenegro // Journal of the Serbian Chemical Society. 2014. Vol. 79, iss. 11. P. 1445–1460. doi: 10.2298/jsc140409074k.
- Chorom M., Parnian A., Jaafarzadeh N. Nickel removal by the aquatic plant (Ceratophyllum demersum L.) // International Journal of Environmental Science and Development. 2012. Vol. 3, № 4. P. 372–375. doi: 10.7763/ijesd.2012.v3.250.
- Губанов И.А., Киселева К.В., Новиков В.С., Тихомиров В.Н. Иллюстрированный определитель растений Средней России. Т. 1. Папоротники, хвощи, плауны, голосеменные, покрытосеменные (однодольные). М.: Т-во научных изданий КМК, Ин-т технологических исследований, 2002. 526 с.
- Григорьев Ю.С., Стравинскене Е.С. Методика определения токсичности питьевых, природных и сточных вод, водных вытяжек из почв, осадков сточных вод и отходов по изменению относительного показателя замедленной флуоресценции культуры водоросли хлорелла (Chlorella vulgaris Beijer). ПНД Ф Т 14.1:2:4.16-2009. Т 16.1:2.3:3.14-2009. М.: Федеральный центр анализа и оценки техногенного воздействия, 2012. 43 с.
- Qadri H., Uqab B., Javeed O., Dar G.H., Bhat R.A. Ceratophyllum demersum – an accretion biotool for heavy metal remediation // Science of the Total Environment. 2022. Vol. 806, part 2. doi: 10.1016/j.scitotenv.2021.150548.
- Титов А.Ф., Казнина Н.М., Таланова В.В. Тяжелые металлы и растения. Петрозаводск: Карельский научный центр РАН, 2014. 194 с.
Supplementary files
