Comparative data on the blood leukocyte composition of semi-aquatic turtles from the Samara Zoo

Cover Page

Cite item

Full Text

Abstract

The leukocyte blood count of 16 species of five families of semi-aquatic turtles from the Samara Zoo was determined. A comparison of the leukogram of representatives of two genera of the family Emydidae revealed a reduced proportion of heterophils and an increased proportion of basophils in Graptemys (G. pseudogeographica, G. nigrinoda) compared with Terrapene (T. triunguis, T. ornata). The leukocyte profile of Cuora mouhotii (Geoemydidae) was characterized by an increased content of heterophils, which showed a higher activation of innate immune responses. The most similar in leukocyte composition are the species of the Kinosternidae family of three genera: Kinosternon, Sternotherus and Staurotypus. The clade Trionychia (Trionychidae) differed from the clade Durocryptodira (Emydidae, Geoemydidae and Kinosternidae) by an increased number of heterophils and monocytes, and a low content of eosinophils. The Pleurodira suborder (Chelidae) differed from the Cryptodira suborder (Emydidae, Geoemydidae, Kinosternidae, Trionychidae) by an increased content of agranulocytes. Positive significant correlations of the length of the carapace with the content of heterophils and the values of leukocyte indices (index of the eosinophils and lymphocytes ratio, index of the heterophils and eosinophils ratio, index of the heterophils and lymphocytes ratio) reflecting the increased role of nonspecific resistance of the turtle organism during ontogenesis and negative significant correlations with the content of eosinophils were revealed. The index of the heterophils and lymphocytes ratio, which is an indicator of physiological stress, had the minimum value among the studied species in Sternotherus odoratus (Kinosternidae), the maximum value in C. mouhotii (Geoemydidae).

About the authors

Elena Borisovna Romanova

National Research Lobachevsky State University of Nizhny Novgorod

Author for correspondence.
Email: romanova@ibbm.unn.ru

doctor of biological sciences, professor of Ecology Department

Russian Federation, Nizhny Novgorod

Irina Aleksandrovna Stolyarova

National Research Lobachevsky State University of Nizhny Novgorod

Email: irinaisto75@gmail.com

master student of Ecology Department

Russian Federation, Nizhny Novgorod

Andrey Gennadievich Bakiev

Institute of Ecology of the Volga River Basin of the Russian Academy of Sciences – Branch of the Samara Federal Research Center of the Russian Academy of Sciences

Email: herpetology@list.ru

candidate of biological sciences, senior researcher of Biodiversity Laboratory

Russian Federation, Togliatti, Samara Region

Roman Andreevich Gorelov

Institute of Ecology of the Volga River Basin of the Russian Academy of Sciences – Branch of the Samara Federal Research Center of the Russian Academy of Sciences

Email: gorelov.roman@mail.ru

candidate of biological sciences, junior researcher of Biodiversity Laboratory

Russian Federation, Togliatti, Samara Region

References

  1. Krenz J.G., Naylor G.J.P., Shaffer H.B., Janzen F.J. Molecular phylogenetics and evolution of turtles // Molecular Phylogenetics and Evolution. 2005. Vol. 37, iss. 1. P. 178–191. doi: 10.1016/j.ympev.2005.04.027.
  2. Barley A.J., Spinks P.Q., Thomson R.C., Shaffer H.B. Fourteen nuclear genes provide phylogenetic resolution for difficult nodes in the turtle tree of life // Molecular Phylogenetics and Evolution. 2010. Vol. 55, iss. 3. P. 1189–1194. doi: 10.1016/j.ympev.2009.11.005.
  3. Crawford N.G., Parham J.F., Sellas A.B., Faircloth B.C., Glenn T.C., Papenfuss T.J., Henderson J.B., Hansen M.H., Simison W.B. A phylogenomic analysis of turtles // Molecular Phylogenetics and Evolution. 2015. Vol. 83. P. 250–257. doi: 10.1016/j.ympev.2014.10.021.
  4. Shaffer H.B., McCartney-Melstad E., Near T.J., Mount G.G., Spinks P.Q. Phylogenomic analyses of 539 highly informative loci dates a fully resolved time tree for the major clades of living turtles (Testudines) // Molecular Phylogenetics and Evolution. 2017. Vol. 115. P. 7–15. doi: 10.1016/j.ympev.2017.07.006.
  5. Lyson T.R., Bever G.S. Origin and evolution of the turtle body plan // Annual Review of Ecology, Evolution, and Systematics. 2020. Vol. 51. P. 143–166. doi: 10.1146/annurev-ecolsys-110218-024746.
  6. Черепахи // Биологический энциклопедический словарь. М.: Советская энциклопедия, 1986. С. 713–714.
  7. The Reptile Database / eds. P. Uetz, P. Freed, R. Aguilar, F. Reyes, J. Kudera, J. Hošek. 2024 [Internet]. http://www.reptile-database.org.
  8. Agha M., Ennen J.R., Bower D.S., Nowakowski A.J., Sweat S.C., Todd B.D. Salinity tolerances and use of saline environments by freshwater turtles: Implications of sea level rise // Biological Reviews of the Cambridge Philosophical Society. 2018. Vol. 93. P. 1634–1648. doi: 10.1111/brv.12410.
  9. International Guiding Principles for Biomedical Research Involving Animals. 2012 [Internet]. https://grants.nih.gov/grants/olaw/guiding_principles_2012.pdf.
  10. Alleman A.R., Jacobson E.R., Raskin R.E. Morphologic and cytochemical characteristics of blood cells from the desert tortoise (Gopherus agassizii) // American Journal of Veterinary Research. 1992. Vol. 53, iss. 9. P. 1645–1651.
  11. Соколина Ф.М., Павлов А.В., Юсупов Р.Х. Гематология пресмыкающихся: метод. пособие по курсу герпетология, большому практикуму и спецсеминарам. Казань: Казанский государственный университет, 1997. 31 с.
  12. Хайрутдинов И.З., Соколина Ф.М. Характеристика крови рептилий и ее связь с условиями обитания: учеб.-метод. пособие к курсу «Герпетология». Казань: Казанский университет, 2010. 44 с.
  13. Davis A.K., Maney D.L., Maerz J.C. The use of leukocyte profiles to measure stress in vertebrates: A review for ecologists // Functional Ecology. 2008. Vol. 22, iss. 5. P. 760–772. doi: 10.1111/j.1365-2435.2008.01467.x.
  14. Minias P. Evolution of heterophil/lymphocyte ratios in response to ecological and life-history traits: A comparative analysis across the avian tree of life // Journal of Animal Ecology. 2019. Vol. 88, iss. 4. P. 554–565. doi: 10.1111/1365-2656.12941.
  15. Kogut M.H., Iqbal M., He H., Philbin V., Kaiser P., Smith A. Expression and function of Toll-like receptors in chicken heterophils // Developmental & Comparative Immunology. 2005. Vol. 29, iss. 9. P. 791–807. doi: 10.1016/j.dci.2005.02.002.
  16. Hasselquist D. Comparative immunoecology in birds: hypotheses and tests // Journal of Ornithology. 2007. Vol. 148. P. 571–582. doi: 10.1007/s10336-007-0201-x.
  17. Reinke B.A., Cayuela H., Janzen F.J. et al. Diverse aging rates in ectothermic tetrapods provide insights for the evolution of aging and longevity // Science. 2022. Vol. 376, iss. 6600. P. 1459–1466. doi: 10.1126/science.abm0151.
  18. Hoebe K., Janssen E., Beutler B. The interface between innate and adaptive immunity // Nature Immunology. 2004. Vol. 5. P. 971–974. doi: 10.1038/ni1004-971.
  19. Lee K.A. Linking immune defenses and life history at the levels of the individual and the species // Integrative and Comparative Biology. 2006. Vol. 46, iss. 6. P. 1000–1015. doi: 10.1093/icb/icl049.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1 – Leukocyte blood cells of turtles of the Kinosternidae family: A – Sternotherus odoratus, B – Staurotypus triporcatus, C – Kinosternon leucostomum

Download (168KB)
3. Figure 2 – Leukocyte blood cells of turtle species from different families: A – Chelodina siebenrocki (Chelidae), B – Apalone ferox (Trionychidae), C – Graptemys nigrinoda (Emydidae)

Download (183KB)
4. Figure 3 – Distribution of turtle species in ascending order of the values of the ISG index

Download (243KB)
5. Figure 4 – Average values of the ratio of heterophiles and lymphocytes of turtle families. Significant differences: Emydidae – Trionychidae (D = 3.56; p = 0.003); Emydidae – Geoemydidae (D = 4.07; p = 0.0004); Chelidae – Geoemydidae (D = 3.09; p = 0.02); Kinosternidae – Geoemydidae (D = 3.00; p = 0.02)

Download (106KB)
6. Figure 5 is a graph of factor coordinates based on the leukocyte profile of turtles

Download (217KB)
7. Figure 6 – Ordination diagram in the space of the main components, based on the leukocyte profile of turtles

Download (83KB)

Copyright (c) 2024 Romanova E.B., Stolyarova I.A., Bakiev A.G., Gorelov R.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies