Ontogenetic changes in the mechanical stability of the main species of woody plants in the ecosystems of the city of Donetsk

Cover Page

Cite item

Full Text

Abstract

The paper considers the issues of ontogenetic changes in the mechanical stability of 18 species of woody plants growing in the ecosystems of the industrial city of Donetsk: Acer campestre L., Acer negundo L., Acer platanoides L., Acer pseudoplatanus L., Acer saccharinum L., Aesculus hippocastanum L., Betula pendula Roth, Fraxinus excelsior L., Fraxinus lanceolata Borkh., Gleditsia triacanthos L., Populus simonii Carriere, Populus nigra L., Populus balsamifera L., Populus bolleana Lauche, Quercus robur L., Robinia pseudoacacia L., Tilia cordata Mill., Ulmus laevis Pall. It has been established that at the initial stages of the ontogenesis of woody plants, their biomechanics ensures survival through high flexibility. This is due to the low critical mass and load, which are easily achieved when static and dynamic factors act on the plant. Only a significant increase in linear dimensions makes it possible to maintain its own mass weighing several tons and above, as well as withstand the effects of adverse climatic factors. The studied ontogenetic dependences of the mechanical stability of the main species of woody plants in the ecosystems of the city of Donetsk should be used in landscaping the city.

About the authors

Vladimir Olegovich Kornienko

Donetsk State University

Author for correspondence.
Email: kornienkovo@mail.ru

candidate of biological sciences, head of Research Department, associate professor of Biophysics Department

Russian Federation, Donetsk

Andrey Stepanovich Yaitsky

Samara State University of Social Sciences and Education

Email: yaitsky@sgspu.ru

senior lecturer of Biology, Ecology and Methods of Teaching Department

Russian Federation, Samara

References

  1. Dahle G.A., Grabosky J.C. Variation in modulus of elasticity (E) along Acer platanoides L. (Aceraceae) branches // Urban Forestry & Urban Greening. 2010. Vol. 9, iss. 3. P. 227–233. doi: 10.1016/j.ufug.2010.01.004.
  2. Корниенко В.О. Биомеханика ствола Robinia pseudoacacia L. в онтогенезе // Вестник Воронежского государственного университета. Серия: Химия. Биология. Фармация. 2017. № 4. С. 48–50.
  3. Sellier D., Suzuki S. Age dynamics of wind risk and tree sway characteristics in a softwood plantation // Frontiers in Forests and Global Change. 2020. Vol. 3 (89). doi: 10.3389/ffgc.2020.00089.
  4. Корниенко В.О., Калаев В.Н. Эколого-биологические особенности и механическая устойчивость древесных растений, используемых в озеленении города Донецка: монография. Воронеж: Изд. дом ВГУ, 2021. 107 с.
  5. Korniyenko V.O., Kalaev V.N. Impact of natural climate factors on mechanical stability and failure rate in silver birch trees in the city of Donetsk // Contemporary Problems of Ecology. 2022. Vol. 15, iss. 7. P. 806–816. doi: 10.1134/s1995425522070150.
  6. Nock C.A., Lecigne B., Taugourdeau O., Greene D.F., Dauzat J., Delagrange S., Messier Ch. Linking ice accretion and crown structure: towards a model of the effect of freezing rain on tree canopies // Annals of Botany. 2016. Vol. 117, iss. 7. P. 1163–1173. doi: 10.1093/aob/mcw059.
  7. Fourcaud T., Blaise F., Lac P., Castera P., de Reffye Ph. Numerical modelling of shape regulation and growth stresses in trees. II. Implementation in the AMAPpara software and simulation of tree growth // Trees. 2003. Vol. 17. P. 31–39. doi: 10.1007/s00468-002-0203-5.
  8. Coutand C., Fournier M., Moulia B. The gravitropic response of poplar trunks: key roles of prestressed wood regulation and the relative kinetics of cambial growth versus wood maturation // Plant Physiology. 2007. Vol. 144, iss. 2. P. 1166–1180. doi: 10.1104/pp.106.088153.
  9. Almeras T., Fournier M. Biomechanical design and long-term stability of trees: morphological and wood traits involved in the balance between weight increase and the gravitropic reaction // Journal of Theoretical Biology. 2009. Vol. 256, iss. 3. P. 370–381. doi: 10.1016/j.jtbi.2008.10.011.
  10. Jaffe M.J. Thigmomorphogenesis: the response of plant growth and development to mechanical stimulation // Planta. 1973. Vol. 114. P. 143–157. doi: 10.1007/bf00387472.
  11. Telewski F.W. Is windswept tree growth negative thigmotropism? // Plant Science. 2012. Vol. 184. P. 20–28. doi: 10.1016/j.plantsci.2011.12.001.
  12. Theckes B., Boutillon X., de Langre E. On the efficiency and robustness of damping by branching // Journal of Sound and Vibration. 2015. Vol. 357. P. 35–50. doi: 10.1016/j.jsv.2015.07.018.
  13. Ulbrich U., Pinto J.G., Kupfer H., Leckebusch G.C., Spangehl T., Reyers M. Changing northern hemisphere storm tracks in an ensemble of IPCC climate change simulations // Journal of Climate. 2008. Vol. 21. P. 1669–1679. doi: 10.1175/2007jcli1992.1.
  14. Gastineau G., Soden B.J. Model projected changes of extreme wind events in response to global warming // Geophysical Research Letters. 2009. Vol. 36, iss. 10. doi: 10.1029/2009gl037500.
  15. Корниенко В.О., Калаев В.Н. Влияние природно-климатических факторов на механическую устойчивость и аварийность деревьев березы повислой в г. Донецке // Лесоведение. 2022. № 3. С. 321–334.
  16. Алексеев В.А. Диагностика жизненного состояния деревьев и древостоев // Лесоведение. 1989. № 4. С. 51–57.
  17. Niklas K.J., Spatz H.-C. Worldwide correlations of mechanical properties and green wood density // American Journal of Botany. 2010. Vol. 97, iss. 10. P. 1587–1594. doi: 10.3732/ajb.1000150.
  18. Корниенко В.О. Ретроспективный анализ антропогенного загрязнения города Донецка. Вибрационно-акустическое зашумление // Вестник Донецкого национального университета. Серия А: Естественные науки. 2024. № 1. С. 93–100. doi: 10.5281/zenodo.12532574.
  19. Корниенко В.О., Яицкий А.С. Жизнеспособность древесных растений в условиях зашумления городской территории (на примере г. Донецка) // Естественные и технические науки. 2022. № 12 (175). С. 166–170.
  20. Корниенко В.О., Яицкий А.С. Экологические последствия шумового загрязнения города Донецка // Современная наука: актуальные проблемы теории и практики. Серия: Естественные и технические науки. 2022. № 11–2. С. 28–34.
  21. Nakao H., Kim S., Mataki Y., Fujimoto N. Factorial analysis of forest damage by T9117 and T9119 // Bulletin of the Kyushu University Forests. 1993. Vol. 68. P. 11–48.
  22. Abe T. Factorial Analysis of Forest Damage Occurred in the Oji Paper Company in Tomakomai City and Hazard Map // 18th Report of Forest Wind Damage Analysis by RemoteSensing: A Damage Survey for 2004 Typhoon. 2005. P. 51–54.
  23. Sato H., Abe T. Factorial analysis of forest damage by T0418 // Kosyunaikiho. 2006. Vol. 143. P. 7–11.
  24. Корниенко В.О., Калаев В.Н., Харченко Н.Н. Механическая устойчивость старовозрастных деревьев Quercus robur L. в условиях города Донецка // Ученые записки Крымского федерального университета имени В.И. Вернадского. Биология. Химия. 2021. Т. 7, № 4. С. 60–68.
  25. Netsvetov M., Sergeyev M., Nikulina V., Korniyenko V., Prokopuk Yu. The climate to growth relationships of pedunculate oak in steppe // Dendrochronologia. 2017. Vol. 44. P. 31–38. doi: 10.1016/j.dendro.2017.03.004.
  26. Корниенко В.О., Нецветов М.В. Влияние отрицательных температур на механическую устойчивость дуба красного (Quercus rubra L.). // Промышленная ботаника. 2013. Вып. 13. С. 180–186.
  27. Филимонова Л.В. Биоэкологическое обоснование применения пирамидальной формы дуба черешчатого в благоустройстве и озеленении городов // Актуальные проблемы лесного комплекса. 2008. № 21 (3). С. 169–172.
  28. Дерев'янко В.М., Левон Ф.М. Гледичія на Півдні України. Киев: ННЦ ІАЕ, 2007. 148 с.
  29. Корниенко В.О., Калаев В.Н. Эколого-морфологические и биомеханические особенности Gleditsia triacanthos L. в условиях антропогенного загрязнения города Донецка // Вестник Воронежского государственного университета. Серия: Химия. Биология. Фармация. 2018. № 2. С. 143–151.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1 – The ratio of bending stiffness (EI) of tree trunks of some species of the genus Acer L. (A – Acer campestre L., B – Acer negundo L., C – Acer platanoides L., D – Acer pseudoplatanus L., D – Acer saccarinum L.) for different age classes. Notes (for Figures 1, 3-9): ECT trees grow in an ecologically clean area (trend line – solid line), AZ trees grow in conditions of anthropogenic pollution (trend line – dotted line); age classes: I – age of plants 5-15 years, II – age of plants 16-25 years, III – the age of plants is 26-55 years, IV – the age of plants is 56-75 years, V – the age of plants is 76-100 years, VI – the age of plants is more than 100 years

Download (430KB)
3. Figure 2 – Loss of mechanical stability after windage for Acer negundo L., which has reached a critical age in an urban environment (photo by V.O. Kornienko, 2018)

Download (986KB)
4. Figure 3 – The ratio of bending stiffness (EI) of tree trunks of some species of the genus Populus L. (A – Populus simonii Carriere, B – Populus nigra L., C – Populus balsamifera L., D – Populus bolleana Lauche) for different age classes

Download (174KB)
5. Figure 4 – Bending resistance (EI) of tree trunks of some species of the genus Fraxinus L. (A – Fraxinus excelsior L., B – Fraxinus lanceolata Borkh.) for different age classes

Download (113KB)
6. Figure 5 – Tilia cordata Mill trees. in the conditions of Donetsk: A – resistance to bending of tree trunks (EI) for different age classes; B – the central alley of the Donetsk Botanical Garden with Tilia cordata Mill. (photo by V.O. Kornienko, 2021)

Download (477KB)
7. Figure 6 – Trees of Aesculus hippocastanum L. in the conditions of Donetsk: A – resistance to bending of tree trunks of Aesculus hippocastanum L. for different age classes; B – typical damage to the trunk of Aesculus hippocastanum L. trees. regardless of the growing conditions – open frost holes with signs of pest infestation, the beginning of the process of development of sound rot (photo by V.O. Kornienko, 2021); C – typical damage to the trunk of Aesculus hippocastanum L. trees. in the form of a closed radial crack (overgrown), which occurs under the action of cyclic freezing/thawing processes (photo by V.O. Kornienko, 2024)

Download (625KB)
8. Figure 7 – Bending stiffness ratio (EI) of tree trunks Quercus robur L. (A) and Robinia pseudoacacia L. (B) for different age classes

Download (168KB)
9. Figure 8 – The ratio of bending stiffness (EI) of tree trunks Gleditsia triacanthos L. (A) and Ulmus laevis Pall. (B) for different age classes

Download (145KB)
10. Figure 9 – Bending stiffness ratio (EI) of Betula pendula Roth tree trunks for different age classes

Download (181KB)

Copyright (c) 2024 Kornienko V.O., Yaitsky A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies