Behavioral strategy of adaptation of Polypterus senegalus(Polypteridae) with an increase in ambient temperature

Cover Page

Cite item

Full Text

Abstract

This paper investigates the effect of temperature increase on the behaviour of Polypterus under laboratory experimental conditions. To investigate the effect of a change in temperature regime, analysis of video recordings of animal behaviour over eight hours under acclimation conditions and under a constant temperature increase is used. The temperature increase occurred at a rate of 1,125°C/hour. The movement trajectories of the animals under normal conditions and under a sudden increase in ambient temperature are described. The paper presents results on the speed and activity of the fish movements and the number of acts of air entrapment by polypterus from the water surface. The studies show that the increase in temperature leads to an increase in the variability of the animals’ movement trajectories. A steady increase in temperature leads to an increase in the speed and activity of the animals’ movements. As the temperature regime changes, there is an increase in the number of acts of air capture from the water surface. The largest jump in activity change is observed in the second and third hours of temperature increase. The obtained material can serve as a basis for the development of ideas about the behavioural adaptation of bony fishes to the increase in ambient temperature. The observed regularities in the responses to temperature changes will make it possible to improve the technology of polypterus cultivation.

About the authors

Evgenii G. Evdokimov

P.G. Demidov Yaroslavl State University

Author for correspondence.
Email: skrad200052@yandex.ru

assistant of Human and Animal Physiology Department

Russian Federation, Yaroslavl

References

  1. Alfonso S., Gesto M., Sadoul B. Temperature increase and its effects on fish stress physiology in the context of global warming // Journal of Fish Biology. 2021. Vol. 98, № 6. P. 1496–1508. doi: 10.1111/jfb.14599.
  2. Volkoff H., Rønnestad I. Effects of temperature on feeding and digestive processes in fish // Temperature. 2020. Vol. 7, № 4. P. 307–320. doi: 10.1080/23328940.2020.1765950.
  3. Little A.G., Loughland I., Seebacher F. What do warming waters mean for fish physiology and fisheries? // Journal of Fish Biology. 2020. Vol. 97, № 2. P. 328–340. doi: 10.1111/jfb.14402.
  4. Голованова И.Л., Голованов В.К. Пищеварительные гликозидазы рыб в условиях повышения температуры среды (обзор) // Труды Института биологии внутренних вод РАН. 2015. № 72 (75). С. 50–59.
  5. Шалагина Н.Е., Солдатов А.А., Богданович Ю.В. Влияние холодового шока на размеры и активность ядерных эритроцитов Scorpaena porcus (Linnaeus, 1758) (эксперименты in vitro) // Журнал эволюционной биохимии и физиологии. 2023. Т. 59, № 3. С. 168–177. doi: 10.31857/s0044452923030087.
  6. Neubauer P., Andersen K.H. Thermal performance of fish is explained by an interplay between physiology, behaviour and ecology // Conservation Physiology. 2019. Vol. 7, № 1. doi: 10.1093/conphys/coz025.
  7. Голованов В.К. Эколого-физиологические закономерности распределения и поведения пресноводных рыб в термоградиентных условиях // Вопросы ихтиологии. 2013. Т. 53, № 3. С. 286–314. doi: 10.7868/s0042875213030016.
  8. Смирнов А.К., Смирнова Е.С. Поведение молоди окуня Perca fluviatilis (Percidae) в гетеротермальной среде при разной обеспеченности пищей // Зоологический журнал. 2019. Т. 98, № 2. С. 182–192. doi: 10.1134/s0044513419020168.
  9. Гашкина Н.А., Моисеенко Т.И. Метаболизм рыб в условиях теплового загрязнения // Фундаментальные основы биогеохимических технологий и перспективы их применения в охране природы, сельском хозяйстве и медицине: тр. XII междунар. биогеохимической школы, посв. 175-летию со дня рожд. В.В. Докучаева. Тула: Тул. гос. пед. ун-т им. Л.Н. Толстого, 2021. С. 349–353.
  10. Lutek K., Foster K.L., Standen E.M. Behaviour and muscle activity across the aquatic–terrestrial transition in Polypterus senegalus // Journal of Experimental Biology. 2022. Vol. 225, № 23. doi: 10.1242/jeb.243902.
  11. Tenyang N., Mawamba L.A., Ponka R., Mamat A., Tiencheu B., Womeni H.M. Effect of cooking and smoking methods on proximate composition, lipid oxidation and mineral contents of Polypterus bichir bichir fish from far-north region of Cameroon // Heliyon. 2022. Vol. 8, № 10. doi: 10.1016/j.heliyon.2022.e10921.
  12. Gardin A., Otero O., Réveillac E., Lafitte A., Valentin X., Lapalus F., Bouchon D., Garcia G. Seasonality and growth in tropical freshwater ectotherm vertebrates: Results from 1‐year experimentation in the African gray bichir, giraffe catfish, and the West African mud turtle // Ecology and Evolution. 2023. Vol. 13, iss. 3. doi: 10.1002/ece3.9936.
  13. Mönck H.J., Jörg A., Falkenhausen T., Tanke J., Wild B., Dormagen D., Piotrowski J., Winklmayr C., Bierbach D., Landgraf T. BioTracker: An Open-Source Computer Vision Framework for Visual Animal Tracking // Computer Science. Computer Vision and Pattern Recognition. 2018. doi: 10.48550/arxiv.1803.07985.
  14. Renesh B. reneshbedre/bioinfokit: Bioinformatics data analysis and visualization toolkit // Zenodo. 2020. doi: 10.5281/zenodo.3698145.
  15. Virtanen P., Gommers R., Oliphant T.E., Haberland M., Reddy T., Cournapeau T., Burovski E., Peterson P., Weckesser W., Bright J., Walt S.J., Brett M., Wilson J., Millman K.J., Mayorov N., Nelson A.R.J., Jones E., Kern R., Larson E., Carey C.J., Polat I., Feng Y., Moore E.W., VanderPlas J., Laxalde D., Perktold J., Cimrman R., Henriksen I., Quintero E.A., Harris C.R., Archibald A.M., Ribeiro A.H., Pedregosa F., Mulbregt P., SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python // Nature Methods. 2020. Vol. 17, № 3. P. 261–272.
  16. Crawshaw L.I. Physiological and behavioral reactions of fishes to temperature change // Journal of the Fisheries Board of Canada. 1977. Vol. 34, № 5. P. 730–734. doi: 10.1139/f77-113.
  17. Holt R.E., Jørgensen C. Climate change in fish: effects of respiratory constraints on optimal life history and behavior // Biology Letters. 2015. Vol. 11, iss. 2. doi: 10.1098/rsbl.2014.1032.
  18. Bartolini T., Butail S., Porfiri M. Temperature influences sociality and activity of freshwater fish // Environmental Biology of Fishes. 2015. Vol. 98. P. 825–832.
  19. Biro P.A., Beckmann C., Stamps J.A. Small within-day increases in temperature affects boldness and alters personality in coral reef fish // Proceedings of the Royal Society B: Biological Sciences. 2010. Vol. 277, № 1678. P. 71–77.
  20. Facey D.E., Grossman G.D. The Metabolic Cost of Maintaining Position for Four North American Stream Fishes: Effects of Season and Velocity // Physiological Zoology. 1990. Vol. 63, № 4. P. 757–776. doi: 10.1086/physzool.63.4.30158175.
  21. Donaldson M.R., Raby G.D., Nguyen V.N., Hinch S.G., Patterson D.A., Farrell A.P., Rudd M.A., Thompson L.A. O’Connor C.M., Colotelo A.H., McConnachie S.H., Cook K.V., Robichaud D., English K.K., Cooke S.J. Evaluation of a simple technique for recovering fish from capture stress: integrating physiology, biotelemetry, and social science to solve a conservation problem // Canadian Journal of Fisheries and Aquatic Sciences. 2013. Vol. 70, № 1. P. 90–100. doi: 10.1139/cjfas-2012-0218.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1 – Trajectories of movement of individuals from the control (A) and experimental (B) experiments

Download (1MB)

Copyright (c) 2023 Evdokimov E.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies