The possible role of dopamine receptors DOP-1 and DOP-3 in behavior thermotolerance regulation of Caenorhabditis elegans Maupas

Cover Page

Cite item

Full Text

Abstract

The paper investigates dopamine influence on the tolerance of swimming, induced by mechanical stimulus, to the temperature of 36°C during the experiments with nematodes of wild type strain N2 and mutant strains LX636 (dop-1(vs101)) and LX703 (dop-3(vs106)) with null-mutations of genes of dopamine receptors DOP-1 and DOP-3. The authors have shown that dopamine in concentrations 0,5–1,0 mM increased the behavior thermotolerance of C. elegans while in concentrations 7,5–15,0 dopamine caused its decrease. Null-mutation of dopamine receptor gene dop-3 prevented the decrease of C. elegans thermotolerance by dopamine. On the contrary, null-mutation of dopamine receptor gene dop-1 caused significant rise in sensitivity of behavior thermotolerance to dopamine. In connection with well-known conceptions assuming that the reason of heat damage of C. elegans behavior is acetylcholine deficiency due to inhibition of its secretion by hyperthermia, the dopamine influence on behavior thermotolerance can be accounted for the dopamine influence on acetylcholine secretion by motor neurons. It is known that in C. elegans motor neurons the coexpression of genes of receptors DOP-1 and DOP-3 takes place. Activation of these receptors in turn causes opposite changes in dopamine secretion.

About the authors

Tatiana Borisovna Kalinnikova

Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences

Email: tbkalinnikova@gmail.com

candidate of biological sciences, head of the Laboratory of Experimental Ecology

Russian Federation, Kazan

Rufina Rifkatovna Kolsanova

Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences

Email: rufina@kolsanova.com

candidate of biological sciences, researcher of the Laboratory of Experimental Ecology

Russian Federation, Kazan

Evgenia Borisovna Belova

Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences

Email: dzhesi@yandex.ru

junior researcher of the Laboratory of Experimental Ecology

Russian Federation, Kazan

Dilyara Makhmutrievna Khakimova

Kazan (Volga Region) Federal University

Email: diazkzn@mail.ru

candidate of medical sciences, senior lecturer of the Department of Morphology and General Pathology

Russian Federation, Kazan

Marat Khamitovich Gainutdinov

Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences

Email: mgainutdinov@gmail.com

doctor of biological sciences, professor, senior researcher of the Laboratory of Experimental Ecology

Russian Federation, Kazan

Rifgat Roaldovich Shagidullin

Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences

Author for correspondence.
Email: shagidullin_@mail.ru

doctor of chemical sciences, corresponding member of the Tatarstan Academy of Sciences, director

Russian Federation, Kazan

References

  1. Knable M.B., Weinberger D.R. Dopamine, the prefrontal cortex and schizophrenia // J. Psycopharmacol. 1997. Vol. 11. P. 123-131.
  2. Koob G.F., Sanna P.P., Bloom F.E. Neuroscience of addiction // Neuron. 1998. Vol. 21. P. 467-476.
  3. Lang F.E., Lozano A.M. Parkinson's disease. First of two parts // New Engl. J. Med. 1998. Vol. 339. P. 1044-1053.
  4. Robertson R.M. Modulation of neural circuit operation by prior environmental stress // Integr. Comp. Biol. 2004. Vol. 44. P. 21-27.
  5. Robertson R.M. Thermal stress and neural function: adaptive mechanisms in insect model systems // Journal of Thermal Biology. 2004. Vol. 29. P. 351-358.
  6. Bouchama A., Knochel J.P. Heat stroke // New Engl. J. Med. 2002. Vol. 346. P. 1978-1988.
  7. Kalinnikova T.B., Kolsanova R.R., Gainutdinov M.Kh. Caenorhabditis elegans as a convenient model organism for understanding heat stress effects upon intact nervous system // Heat Stress: Causes, Treatment and Prevention / Eds. S. Josipovich and E. Ludwig. NY: Nova Science Publishers, 2012. P. 113-140.
  8. Kalinnikova T.B., Shagidullin R.R., Kolsanova R.R., Osipova E.B., Zakharov S.V., Gainutdinov M.Kh. Acetylcholine deficiency in Caenorhabditis elegans induced by hyperthermia can be compensated by ACh-esterase inhibition or activation of GAR-3 mAChRs // Environ. Nat. Resour. Res. 2013. Vol. 3. P. 98-113.
  9. Kalinnikova T.B., Kolsanova R.R., Belova E.B., Shagidullin R.R., Gainutdinov M.Kh. Opposite responses of the cholinergic nervous system to moderate heat stress and hyperthermia in two soil nematodes // J. Therm. Biol. 2016. Vol. 62. P. 37-49.
  10. Vidal-Gadea A., Topper S., Young L., Crisp A., Kressin L., Elbel E., Maples T., Brauner M., Erbguth K., Axelrod A., Gottschalk A., Siegel D., Pierce-Shimomura T. Caenorhabditis elegans selects distinct crawling and swimming gaits via dopamine and serotonin // PNAS. 2011. Vol. 108. P. 17504-17509.
  11. Nurrish S., Ségalat L., Kaplan J.M. Serotonin inhibition of synaptic transmission: Gα0 decreases the abundance of UNC-13 at release site // Neuron. 1999. Vol. 24. P. 231-242.
  12. Chase D.L., Pepper J.S., Koelle M.R. Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans // Nature Neurosci. 2004. Vol. 7. P. 1096-1103.
  13. Brenner S. The genetics of Caenorhabditis elegans // Genetics. 1974. Vol. 77. P. 71-94.
  14. Anderson G.L., Cole R.D., Williams P.L. Assessing behavioral toxicity with Caenorhabditis elegans // Environ. Toxicol. Chem. 2004. Vol. 23. P. 1235-1240.
  15. Dittmann J.S., Kaplan J.M. Behavioral impact of neurotransmitter-activated GPCRs: muscarinic and GABAb receptors regulate C. elegans locomotion // J. Neurosci. 2008. Vol. 28. P. 7104-7112.
  16. Glosh R., Mohammadi A., Kruglyak L., Ryu W.S. Multiparameter behavioral profiling reveals distinct thermal response regimes in Caenorhabditis elegans // BMC Biol. 2012. Vol. 10. P. 1-17.
  17. Sawin E.R., Ranganathan R., Horvitz H.R. C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway // Neuron. 2000. Vol. 26. P. 619-631.
  18. Schafer W.R., Kenyon S. A calcium-channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans // Nature. 1995. Vol. 375. P. 73-78.
  19. Nass R., Blakely R.D. The Caenorhabditis elegans dopaminergic system: opportunities for insight into dopamine transport and neurodegeneration // Ann. Rev. Pharmacol. Toxicol. 2003. Vol. 43. P. 521-544.
  20. Sanyal S., Wintle R.F., Kindt K.S., Nuttley W.M., Arvan R., Fitzmaurice P., Bigras E., Merz D.C., Hébert T.E., van der Kooy D., Schafer W.R., Culotti J.G., van Tol H.H.M. Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans // EMBO J. 2004. Vol. 23. P. 473-482.
  21. Ezak M.J., Ferkey D.M. The C. elegans D2-like dopamine receptor DOP-3 decreases behavioral sensitivity to the olfactory stimulus 1-octanol // PLoS One. 2010. Vol. 5. doi: 10.1371/journal.pone.0009487.
  22. Hoffmann A.A., Sørensen J.G., Loeschke V. Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches // J. Therm. Biol. 2003. Vol. 28. P. 175-216.
  23. Kalinnikova T.B., Kolsanova R.R., Shagidullin R.R., Osipova E.B., Gaynutdinov M.Kh. On the role of gene of SER-4 serotonin receptor in thermotolerance of Caenorhabditis elegans behavior // Russian J. Genetics. 2013. Vol. 49. P. 363-366.
  24. Suo S., Ishiura S. Dopamine modulates acetylcholine release via octopamine and CREB signaling in Caenorhabditis elegans // PLoS ONE. 2013. Vol. 8. doi: 10.1371/journal.pone.0072578.

Copyright (c) 2018 Kalinnikova T.B., Kolsanova R.R., Belova E.B., Khakimova D.M., Gainutdinov M.K., Shagidullin R.R.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies