The primary assessment of the red oak seeds quality and prospects for its bioinvasive potential realization in the Samara region urban environment

Cover Page

Cite item

Full Text

Abstract

The world population growth postulates a necessity for food increase to provide mankind with edible products. A growing number of archaeobotanical finds of acorns indicates that they were important as a staple food for some regions. According to its characteristics, red oak is one of the promising species that can increase the resource potential of oak forests in the Middle Volga region. Compared to local oak one, red oak wood is more resistant to vascular and necrotic-cancerous pathologies. The red oak is also more resistant to oak powdery mildew. On the territory of the Middle Volga region, red oak is still rare, because of its limited use in plantations. The subject of the study is the quality of red oak seeds formed by trees from the arboretum of the Institute of Ecology of the Volga Basin (Togliatti city), where they were collected in an amount enough to assess the quality of seeds formed by an introduced species on a territory new to it. The study of the internal structure of oak seeds with dense shells was carried out by digital microfocus radiography using a PRDU installation. This method is included in international standards, primarily for assessing the formation of the seeds internal structure and grain damage by phytophages. X-ray screening allowed to categorize the red oak seeds: 1) seeds, fully formed, filled and not damaged by insects; 2) seeds that, when falling from a tree, retain their cupula (do not have a developed content); 3) seeds damaged by insects during the formation of cotyledons; 4) seeds without a cupula, but with varying severity of underdevelopment; 5) seeds with partial underdevelopment of the cotyledons, which do not fill the entire volume of the seed coats. The weight and size parameters of seeds formed in the Samara region correspond to the indicators from other regions of red oak growth and are: diameter – 1,76 ± 0,01 cm; length – 2,48 ± 0,02 cm; weight of 1000 seeds – 4224 ± 62,65 g (harvest 2021). At the same time, only from 55 to 39% of red oak seeds (harvests in 2021 and 2022, respectively) were of a sufficiently high quality to be used for sowing. Considering the prospects of red oak as an agent of biological invasion, the authors point to the variability of its seed harvest by years, the formation of a high proportion of low-quality seeds, as well as a small amount of self-seedings with increased demands to soil moisture.

About the authors

Polina Vladimirovna Rodionova

Samara National Research University

Author for correspondence.
Email: polina-rodionova-1996@mail.ru

postgraduate student of Ecology, Botany and Nature Protection Department

Russian Federation, Samara

Alina Petrovna Oven

Samara National Research University

Email: a-oven@mail.ru

student of Biological Faculty

Russian Federation, Samara

Anastasiya Viktorovna Ivanova

Institute of Ecology of the Volga River Basin of the Russian Academy of Sciences – Branch of the Samara Federal Research Center of the Russian Academy of Sciences

Email: nastia621@yandex.ru

candidate of biological sciences, researcher of Phytodiversity and Phytocoenology Problems Laboratory

Russian Federation, Togliatti, Samara Region

Tatyana Mikhailovna Zhavkina

Samara National Research University

Email: tanya.zhavkina@yandex.ru

head of Dendrology Department of Botanical Garden

Russian Federation, Samara

References

  1. Tejerinaa D., Garcia-Torresa S., Cabeza de Vacaa M., Vazqueza F.M., Cavab R. Acorns (Quercus rotundifolia Lam.) and grass as natural sources of antioxidants and fatty acids in the «montanera» feeding of Iberian pig: intra- and inter-annual variations // Food Chemistry. 2017. Vol. 124, iss. 3. P. 997–1004. doi: 10.1016/j.foodchem.2010.07.058.
  2. Shi W., Villar-Salvador P., Li G., Jiang X. Acorn size is more important than nursery fertilization for outplanting performance of Quercus variabilis container seedlings // Annals of Forest Science. 2019. Vol. 76. doi: 10.1007/s13595-018-0785-8.
  3. Rosenberg D. The possible use of acorns in past economies of the Southern Levant: a staple food or a negligible food source? // The Journal of the Council for British Research in the Levant. 2008. Vol. 40, iss. 2. P. 167–175. doi: 10.1179/175638008x348025.
  4. Silva S., Costa E.M., Borges A., Carvalho A.P., Monteiro M.J., Pintado M.M.E. Nutritional characterization of acorn flour (a traditional component of the Mediterranean gastronomical folklore) // Journal of Food Measurement and Characterization. 2016. Vol. 10. P. 584–588. doi: 10.1007/s11694-016-9340-1.
  5. Vinha A.F., Barreira J.C.M., Ferreira I.C.F.R., Oliveira M.B.P.P. Therapeutic, phytochemistry, and pharmacology of acorns (Quercus nuts): a review // Bioactive Compounds in Underutilized Fruits and Nuts. Cham: Springer, 2020. P. 273–287. doi: 10.1007/978-3-030-30182-8_46.
  6. Kartesz J.T. The biota of North America program (BONAP) [Internet] // North American Plant Atlas. http://bonap.net/napa.
  7. Cantos E., Espin J.C., Lopez-Bote C., de la Hoz L., Ordonez J.A., Tomas-Barberan F.A. Phenolic compounds and fatty acids from acorns (Quercus spp.), the main dietary constituent of free-ranged Iberian pigs // Journal of Agricultural and Food Chemistry. 2003. Vol. 51, iss. 21. P. 6248–6255. doi: 10.1021/jf030216v.
  8. Lu Z., He F., Shi Y., Lu M., Yu L. Fermentative production of L(+)-lactic acid using hydrolyzed acorn starch, persimmon juice and wheat bran hydrolysate as nutrients // Bioresource Technology. 2010. Vol. 101, iss. 10. P. 3642–3648. doi: 10.1016/j.biortech.2009.12.119.
  9. Kuppusamy S., Thavamani P., Megharaj M., Venkateswarlu K., Lee Y.B., Naidu R. Oak (Quercus robur) acorn peel as a low-cost adsorbent for hexavalent chromium removal from aquatic ecosystems and industrial effluents // Water, Air and Soil Pollution. 2016. Vol. 227, iss. 2. doi: 10.1007/s11270-016-2760-z.
  10. Kyriakidou K., Mourtzinos I., Biliaderis C.G., Makris D.P. Optimization of a green extraction/inclusion complex formation process to recover antioxidant polyphenols from oak acorn husks (Quercus robur) using aqueous 2-hydroxypropyl-β-cyclodextrin/glycerol mixtures // Environments. 2016. Vol. 3, iss. 1. doi: 10.3390/environments3010003.
  11. Custоdio L., Patarra J., Albericio F., da Rosa Neng N., Nogueira J.M.F., Romano A. Phenolic composition, antioxidant potential and in vitro inhibitory activity of leaves and acorns of Quercus suber on key enzymes relevant for hyperglycemia and Alzheimer's disease // Industrial Crops and Products. 2015. Vol. 64. P. 45–51. doi: 10.1016/j.indcrop.2014.11.001.
  12. Vinha A.F., Costa A.S.G., Barreira J.C.M., Pacheco R., Oliveira M.B.P.P. Chemical and antioxidant profiles of acorn tissues from Quercus spp.: potential as new industrial raw materials // Industrial Crops and Products. 2016. Vol. 94. P. 143–151. doi: 10.1016/j.indcrop.2016.08.027.
  13. Rabhi F., Narvаez-Rivas M., Tlili N., Boukhchina S., Leоn-Camacho M. Sterol, aliphatic alcohol and tocopherol contents of Quercus ilex and Quercus suber from different regions // Industrial Crops and Products. 2016. Vol. 83. P. 781–786. doi: 10.1016/j.indcrop.2015.11.020.
  14. Пчелин В.И. Дендрология: учебник. Йошкар-Ола: Марийский гос. технический университет, 2007. 520 с.
  15. Ткаченко К.Г., Фирсов Г.А. К вопросу о латентном периоде Q. rubra L. // Бюллетень Ботанического сада-института ДВО РАН. 2017. Вып. 17. С. 35–38.
  16. Скуратов И.В., Крюкова Е.А. Оценка устойчивости видов, гибридов и форм рода Quercus к эколого-патологическим факторам для защитного лесоразведения [Электронный ресурс] // Современные проблемы науки и образования. 2013. № 1. https://science-education.ru/ru/article/view?id=8204.
  17. Дерюжкин Р.И., Енькова Е.И., Сухов И.В. Совершенствовать способы восстановления дубрав // Лесное хозяйство. 1980. № 2. С. 23–27.
  18. Ткаченко К.Г., Староверов Н.Е., Грязнов А.Ю. Рентгенографическое изучение качества плодов и семян // Hortus Botanicus. 2018. Т. 13. С. 52–66.
  19. Землянова В.Е., Жавкина Т.М., Помогайбин А.В., Кавеленова Л.М., Родионова П.В., Розно С.А., Янков Н.В., Потрахов Н.Н. О возможностях экспресс-оценки качества плодов и семян древесных растений с помощью рентгенографического скрининга // ЭкоБиоТех 2021: мат-лы VII всерос. конф. с междунар. участием. Уфа, 4–7 октября 2021 г. Уфа: УИБ УФИЦ РАН, 2021. С. 207–211.
  20. ГОСТ 13056.4-67. Семена деревьев и кустарников. Методы определения массы 1000 семян // Семена деревьев и кустарников. Правила отбора образцов и методы определения посевных качеств семян. М.: Издательство стандартов, 1988. С. 60–62.
  21. Волкович А.П. Лесное семеноводство. Лабораторный практикум: учеб.-метод. пособие. Минск: БГТУ, 2014. 72 с.
  22. Броувер В., Штелин А. Справочник по семеноведению сельскохозяйственных, лесных и декоративных культур с ключом для определения важнейших семян / пер. с нем. В.И. Леунова. М.: Товарищество научных изданий КМК, 2010. 694 с.
  23. Розно С.А., Кавеленова Л.М., Помогайбин А.В., Жавкина Т.М., Рузаева И.В. К оценке инвазионного потенциала интродуцированных растений в лесостепи Среднего Поволжья // Фитоинвазии: остановить нельзя сдаваться: мат-лы всерос. науч.-практ. конф. с междунар. участием (Москва, 10–11 февраля 2022 г.) / отв. ред. В.В. Чуб. М.: Издательство Московского университета, 2022. С. 204–209.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1

Download (757KB)
3. Fig. 2

Download (682KB)
4. Fig. 3

Download (21KB)
5. Fig. 4

Download (54KB)
6. Fig. 5

Download (58KB)

Copyright (c) 2022 Rodionova P.V., Oven A.P., Ivanova A.V., Zhavkina T.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies