The influence of the nutrient medium on the morphological features and cell viability of the microalgae Chlorella vulgaris Beijer

Cover Page

Cite item

Full Text

Abstract

This paper discusses morphological features and the nature of the viability of the cell groups of the microalgae Chlorella vulgaris Beijer., growing in an artificial nutrient medium. It has been found that in the morphological aspect, the microalgae have a unicellular cell structure of rounded or ellipsoidal shapes with a diameter of cell structures from 2 to 10 microns. The structure of the chlorella cell is represented as a thin shell, in the cytoplasm of which the nucleus with a decorated chloroplast is immersed. The optimal parameters for the intensive growth of chlorella microalgae were temperature values in the range of +27…+29°C. In such temperature values, chlorella microalgae showed the best results in terms of cell growth rate and in the values of its viability index. At the same time, the culture of chlorella cells, having the ability to outstrip cell growth, is able to maintain its systematic variety for a long time. In addition, it has been found that chlorella cells have a pronounced phototropism, expressed in responses to a light pulse and the ability to purposefully move towards it in the form of phototaxis. Further observations showed that the majority of chlorella cells in the visible field of micrometry were about 4–6 microns in size with an average quantitative content of about 4,5 million microalgae cell structures in one milliliter of nutrient (culture) medium. The indicator of the optical density of the studied chlorella cell culture after 14 days of growth in the nutrient medium increased by the end of observations by a little more than 2 times, which indicates a sufficiently high value of the viability of the cell structures of the Chlorella vulgaris Beijer. microalgae culture.

About the authors

Vladimir Vladimirovich Zaitsev

Samara State Agrarian University

Email: zaycev_vv1964@mail.ru

doctor of biological sciences, professor, head of Bioecology and Physiology of Farm Animals Department

Russian Federation, Samara

Vladislav Vyacheslavovich Petryakov

Samara State Agrarian University

Email: petrvlad.79@mail.ru

candidate of biological sciences, associate professor of Bioecology and Physiology of Farm Animals Department

Russian Federation, Samara

Lilia Mikhailovna Zaitseva

Samara State Agrarian University

Email: lilyazaytseva1975@mail.ru

candidate of agricultural sciences, associate professor of Bioecology and Physiology of Farm Animals Department

Russian Federation, Samara

Zhanylsyn Nurlanovna Makhimova

Samara State Agrarian University

Author for correspondence.
Email: aslzhan-90@mail.ru

postgraduate student of Bioecology and Physiology of Farm Animals Department

Russian Federation, Samara

References

  1. Сложенкина М.И., Федотова А.М., Мосолова Е.А. Глобальные проблемы сохранения биоразнообразия и продовольственной безопасности // Аграрно-пищевые инновации. 2020. № 4 (12). С. 76-86. doi: 10.31208/2618-7353-2020-12-76-86.
  2. Buono S., Langellotti A.L., Martello A., Rinna F., Fogliano V. Functional ingredients from microalgae // Food & Function. 2014. Vol. 5, iss. 8. P. 1669-1685. doi: 10.1039/c4fo00125g.
  3. Andrade L.M., de Andrade C.J., Dias M., Nascimento C.A., Mendes M. Chlorella and Spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements; an overview // MOJ Food Processing Technology. 2018. Vol. 6. P. 1-14. doi: 10.15406/mojfpt.2018.06.00144.
  4. Madeira M.S., Cardoso C., Lopes P.A., Coelho D., Afonso C., Bandarra N.M., Prates J.A.M. Microalgae as feed ingredients for livestock production and meat quality: a review // Livestock Science. 2017. Vol. 205. P. 111-121. doi: 10.1016/j.livsci.2017.09.020.
  5. Shen X.-F., Qin Q.-W., Yan S.-K., Huang J.-L., Liu K., Zhou S.-B. Biodiesel production from Chlorella vulgaris under nitrogen starvation in autotrophic, heterotrophic, and mixotrophic cultures // Journal of Applied Phycology. 2019. Vol. 31. P. 1589-1596. doi: 10.1007/s10811-019-01765-1.
  6. Lamminen M., Halmemies-Beauchet-Filleau A., Kokkonen T., Jaakkola S., Vanhatalo A. Different microalgae species as a substitutive protein feed for soya bean meal in grass silage based dairy cow diets // Animal Feed Science and Technology. 2019. Vol. 247. P. 112-126. doi: 10.1016/j.anifeedsci.2018.11.005.
  7. Bleakley S., Hayes M. Algal proteins: extraction, application, and challenges concerning production // Foods. 2017. Vol. 6 (5). doi: 10.3390/foods6050033.
  8. Grossmann L., Hinrichs J., Weiss J. Solubility and aggregation behavior of protein fractions from the heterotrophically cultivated microalga Chlorella protothecoides // Food Research International. 2019. Vol. 116. P. 283-290. doi: 10.1016/j.foodres.2018.08.037.
  9. Markou G., Wang L., Ye J., Unc A. Using agro-industrial wastes for the cultivation of microalgae and duckweeds: contamination risks and biomass safety concerns // Biotechnology Advances. 2018. Vol. 36, iss. 4. P. 1238-1254. doi: 10.1016/j.biotechadv.2018.04.003.
  10. Eladel H., Abomohra A.E., Battah M., Mohamed S., Radwan A., Abdelrahim H. Evaluation of Chlorella sorokiniana isolated from local municipal wastewater for dual application in nutrient removal and biodiesel production // Bioprocess and Biosystems Engineering. 2019. Vol. 42. P. 425-433. doi: 10.1007/s00449-018-2046-5.
  11. Kang H.K., Salim H.M., Akter N. et al. Effect of various forms of dietary Chlorella supplementation on growth performance, immune characteristics, and intestinal microflora population of broiler chickens // Journal of Applied Poultry Research. 2013. Vol. 22, iss. 1. P. 100-108. doi: 10.3382/japr.2012-00622.
  12. Panahi Y., Darvishi B., Jowzi N., Beiraghdar F., Sahebkar A. Chlorella vulgaris: a multifunctional dietary supplement with diverse medicinal properties // Current Pharmaceutical Design. 2016. Vol. 22, iss. 2. P. 164-173. doi: 10.2174/1381612822666151112145226.
  13. Wells M.L., Potin P., Craigie J.S. Algae as nutritional and functional food sources: revisiting our understanding // Journal of Applied Phycology. 2017. Vol. 29. P. 949-982. doi: 10.1007/s10811-016-0974-5.
  14. Helliwell K.E. The roles of B vitamins in phytoplankton nutrition: new perspectives and prospects // New Phytologist. 2017. Vol. 216, iss. 1. P. 62-68. doi: 10.1111/nph.14669.
  15. Ambati R.R., Gogisetty D., Gokare R.A. et al. Botryococcus as an alternative source of carotenoids and its possible applications - an overview // Critical Reviews in Biotechnology. 2018. Vol. 38, iss. 4. P. 541-558. doi: 10.1080/07388551.2017.1378997.
  16. Sun X.-M., Ren L.-J., Zhao Q.-Y., Ji X.-J., Huang H. Microalgae for the production of lipid and carotenoids: a review with focus on stress regulation and adaptation // Biotechnology for Biofuels. 2018. Vol. 11. doi: 10.1186/s13068-018-1275-9.
  17. Kiesenhofer D.P., Fluch S. The promises of microalgae - still a long way to go // FEMS Microbiology Letters. 2018. Vol. 365, iss. 1. doi: 10.1093/femsle/fnx257.
  18. Мессинева Е.М., Козлова А.Ю., Маркелова А.Г., Синетова М.А. Технологический паспорт коллекции микроводорослей и цианобактерий IPPAS Института физиологии растений РАН. 2017. 85 с.
  19. Харчук И.А. Оценка жизнеспособности трех видов микроводорослей после воздействия низких температур с криопротекторами // Вопросы современной альгологии. 2017. № 1 (13). С. 29.
  20. Практическая экотоксикология: оценка чувствительности биотесткультур: учеб. пособие / сост. Е.В. Федосеева, Н.Ю. Сапункова, В.А. Терехова; под ред. В.А. Тереховой. М.: Геос, 2016. 54 с.
  21. Раджабова А.С. Особенности развития микроводоросли хлореллы в зависимости от условий среды // Вклад молодых ученых в аграрную науку: мат-лы междунар. науч.-практ. конф., Кинель, 17 апреля 2019 года. Кинель: Самарская государственная сельскохозяйственная академия, 2019. С. 234-237.
  22. Петряков В.В. Характер роста и развития микроводоросли спирулины, произрастающей в искусственной среде // Общество. Наука. Инновации: сб. ст. XIX всерос. науч.-практ. конф.: в 4-х томах, Киров, 1-26 апреля 2019 года. Киров: Вятский государственный университет, 2019. С. 71-74.
  23. Liu L., Zhao Y., Jiang X., Wang X., Liang W. Lipid accumulation of Chlorella pyrenoidosa under mixotrophic cultivation using acetate and ammonium // Bioresource Technology. 2018. Vol. 262. P. 342-346. doi: 10.1016/j.biortech.2018.04.092.
  24. Liu J., Hu Q. Chlorella: industrial production of cell mass and chemicals // Handbook of Microalgal Culture: Applied Phycology and Biotechnology. Second Edition. 2013. P. 327-338. doi: 10.1002/9781118567166.ch16.
  25. Fu L., Li Q., Yan G., Zhou D., Crittenden J.C. Hormesis effects of phosphorus on the viability of Chlorella regularis cells under nitrogen limitation // Biotechnology for Biofuels. 2019. Vol. 12. doi: 10.1186/s13068-019-1458-z.
  26. Богданова А.А., Флёрова Е.А., Паюта А.А. Влияние условий культивирования на качественные и количественные показатели Chlorella vulgaris // Химия растительного сырья. 2019. № 4. С. 293-304.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1 – Cell colony at magnification of 8 × 10 (A), 8 × 15 (B), 8 × 40 (C)

Download (353KB)
3. Figure 2 – Optical density of biomass at 750 nm of the studied culture Chlorella vulgaris Beijer. when planting in an artificial nutrient medium on the first day and after completing the experiment on its growth (after 14 days)

Download (19KB)

Copyright (c) 2022 Zaitsev V.V., Petryakov V.V., Zaitseva L.M., Makhimova Z.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies