Structural Changes during Polymerization of Acrylamide in Semidilute Solutions of Wormlike Surfactant Micelles

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The structure and rheological properties of aqueous solutions of the anionic surfactant potassium oleate and the water-soluble monomer acrylamide before and after radical polymerization have been studied. In the absence of monomer and in the presence of a low-molecular-weight salt, potassium oleate forms a network of long entangled cylindrical (wormlike) micelles. The addition of the monomer does not lead to a change in their cylindrical shape and radius, but it promotes the transformation of branched micelles into linear ones. The structure of surfactant aggregates changes significantly after polymerization: according to neutron scattering data, it becomes bicontinuous and its local geometry becomes lamellar. The coexistence of such a structure with polyacrylamide macromolecules in a semidilute solution leads to a significant synergistic increase in viscosity and elastic modulus.

Авторлар туралы

A. Ospennikov

Faculty of Physics, Moscow State University

Email: shibaev@polly.phys.msu.ru
119991, Moscow, Russia

A. Shibaev

Faculty of Physics, Moscow State University

Email: shibaev@polly.phys.msu.ru
119991, Moscow, Russia

A. Kuklin


Joint Institute for Nuclear Research; Moscow Institute of Physics and Technology

Email: shibaev@polly.phys.msu.ru
141980, Dubna, Moscow oblast, Russia; 141701, Dolgoprudnyi, Moscow oblast, Russia

O. Philippova

Faculty of Physics, Moscow State University

Хат алмасуға жауапты Автор.
Email: shibaev@polly.phys.msu.ru
119991, Moscow, Russia

Әдебиет тізімі

  1. Семчиков Ю.Д. Высокомолекулярные соединения. М.: Академия, 2008.
  2. Gur’eva L.L., Tkachuk A.I., Estrin Ya.i., Komarov B.A., Dzhavadyan E.A., Estrina G.A., Bogdanova L.M., Surkov N.F., Rozenberg B.A. // Polymer Science A. 2008. V. 50. № 3. P. 283.
  3. Kulichikhin S.G., Malkin A.Ya., Polushkina O.M., Kulichikhin V.G. // Polym. Eng. Sci. 1997. V. 37. № 8. P. 1331.
  4. Fischer E.J., Storti G., Cuccato D. // Processes. 2017. V. 5. № 2. P. 23.
  5. Jaeger W., Hahn M., Lieske A., Zimmermann A., Brand F. // Macromol. Symp. 1996. V. 111. № 1. P. 95.
  6. Evans F.D., Wennerström H. The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet. New York: Wiley-VCH, 1999.
  7. Hill A., Candau F., Selb J. // Macromolecules. 1993. V. 26. № 17. P. 4521.
  8. Candau F., Biggs S., Hill A., Selb J. // Prog. Org. Coat. 1994. V. 24. № 1–4. P. 11.
  9. Friend J.P., Alexander A.E. // J. Polym. Sci., Polym. Chem. 1968. V. 6. P. 1833.
  10. Niranjan P.S., Tiwari A.K., Upadhyay S.K. // J. Appl. Polym. Sci. 2011. V. 122. P. 981.
  11. Barthet C., Wilson J., Cadix A., Destarac M., Chassenieux C., Harrisson S. // J. Polym. Sci., Polym. Chem. 2018. V. 56. № 7. P. 760.
  12. Sabbadin J., François J. // Colloid Polym. Sci. 1980. V. 258. P. 1250.
  13. Dreiss C.A. // Soft Matter. 2007. V. 3. № 8. P. 956.
  14. Shibaev A.V., Osiptsov A.A., Philippova O.E. // Gels. 2021. V. 7. № 4. P. 258.
  15. Israelachvili J.N., Mitchell D.J., Ninham B.W. // J. Chem. Soc., Faraday Trans. 2. 1976. V. 72. P. 1525.
  16. Bergström L.M. // AIP Adv. 2018. V. 8. № 5. P. 055136.
  17. Can V., Kochovski Z., Reiter V., Severin N., Siebenburger M., Kent B., Just J., Rabe J.P., Ballauf M., Okay O. // Macromolecules. 2016. V. 49. № 6. P. 2281.
  18. Tuncaboylu D.C., Sari M., Oppermann W., Okay O. // Macromolecules. 2011. V. 44. № 12. P. 4997.
  19. Shibaev A.V., Ospennikov A.S., Kuznetsova E.K., Kuklin A.I., Aliev T.M., Novikov V.V., Philippova O.E. // Nanomaterials. 2022. V. 12. P. 4445.
  20. Shibaev A.V., Smirnova M.E., Kessel D.E., Bedin S.A., Razumovskaya I.V., Philippova O.E. // Nanomaterials. 2021. V. 11. P. 1271.
  21. Roland S., Miquelard-Garnier G., Shibaev A.V., Aleshina A.L., Chennevière A., Matsarskaia O., Sollogoub C., Philippova O.E., Iliopoulos I. // Polymers. 2021. V. 13. P. 4255.
  22. Shibaev A.V., Aleshina A.L., Arkharova N.A., Orekhov A.S., Kuklin A.I., Philippova O.E. // Nanomaterials. 2020. V. 10. № 12. P. 2353.
  23. Molchanov V.S., Philippova O.E. // Colloid J. 2009. V. 71. № 2. P. 239.
  24. Calabrese M.A., Wagner N.J. // ACS Macro Lett. 2018. V. 7. № 6. P. 614.
  25. Lequeux F. // Europhys. Lett. 1992. V. 19. P. 675.
  26. Ospennikov A.S., Gavrilov A.A., Artykulnyi O.P., Kuklin A.I., Novikov V.V., Shibaev A.V., Philippova O.E. // J. Colloid Interface Sci. 2021. V. 602. P. 590.
  27. Oelschlaeger C., Schopferer M., Scheffold F., Willenbacher N. // Langmuir. 2009. V. 25. № 2. P. 716.
  28. Grillo I. // Soft Matter Characterization / Ed. by R. Borsali, R. Pecora. Springer, 2008. P. 723.
  29. Li X., Lin Z., Cai J., Scriven L.E., Davis H.T. // J. Phys. Chem. 1995. V. 99. P. 10865.
  30. Shibaev A.V., Kuklin A.I., Torocheshnikov V.N., Ore-khov A.S., Roland S., Miquelard-Garnier G., Matsarskaia O., Iliopoulos I., Philippova O.E. // J. Colloid Interface Sci. 2022. V. 611. P. 46.
  31. Gamez-Corrales R., Berret J.-F., Walker L.M., Oberdisse J. // Langmuir. 1999. V. 15. P. 6755.
  32. Salentinig S., Sagalowicz L., Glatter O. // Langmuir. 2010. V. 26. № 14. P. 11670.

Қосымша файлдар


© А.С. Оспенников, А.В. Шибаев, А.И. Куклин, О.Е. Филиппова, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>