ISOLYQUIRITIGENIN AFFECTS PHAGOCYTES FUNCTIONS AND INCREASES MICE SURVIVAL RATE IN STAPHYLOCOCCAL INFECTION


Cite item

Full Text

Abstract

The results of studying the effect of isoliquiritigenin on animal survival in the model of staphylococcal infection and the function of human and animal phagocytes are presented in this article.The aim of the investigation was to study the effect of an isoliquiritigenin preliminary administration on the survival of animals against the background of staphylococcal infection, as well as on the function of phagocytes in mice and humans.Materials and methods. To assess the survival of Balb/C mice, a model of infection caused by Staphylococcus aureus J49 ATCC 25923 with the construction of Kaplan-Meier curves, was used. The effect on the phagocytes functions was studied by assessing the peptone-induced migration of phagocytes into the abdominal cavity of Balb/C mice, the absorption activity of phagocytes (neutrophils and monocytes) of human blood, as well as their production of reactive oxygen intermediates (ROIs) using а flow cytometry.Results. It was found out that a preliminary triple intraperitoneal administration of isoliquiritigenin (30 mg/kg) increases the survival rate of Balb/C mice in staphylococcal infection caused by Staphylococcus aureus J49 ATCC 25923. At the same time, isoliquiritigenin dose-dependently activates the production of reactive oxygen intermediates by human neutrophils and monocytes without statistically significantly suppressing a phagocytic activity of monocytes and neutrophils against fluoresceinisothiocyanate-labeled S. aureus J 49 ATCC 25923, as well as peptone-induced migration of phagocytes into the abdominal cavity of mice.Conclusion. Thus, a preliminary administration of isoliquiritigenin increases the survival rate of mice with staphylococcal infection and increases the production of reactive oxygen intermediates by phagocytes. The data obtained, can become the basis for further research of antibacterial and immunotropic effects of isoliquiritigenin in order to find new drugs for the treatment of staphylococcal infection.

About the authors

E. A. Solenova

Chuvash State University n. a. I.N. Ulyanov

Email: elensoul@mail.ru
15, Moskovsky Ave., Cheboksary, Chuvash Republic, Russia, 428015

S. I. Pavlova

Chuvash State University n. a. I.N. Ulyanov

Email: flavonoid@yandex.ru
15, Moskovsky Ave., Cheboksary, Chuvash Republic, Russia, 428015

References

  1. Medzhitov R. Recognition of microorganisms and activation of the immune response // Nature. - 2007. - Vol. 449, No. 7164. - P. 819-826. doi: 10.1038/nature06246.
  2. Солёнова Е.А., Павлова С.И. Антибактериальные и иммуномодулирующие эффекты флавоноидов // Экспериментальная и клиническая фармакология. - 2020. - Т.83, №10. - С. 33-39. doi: 10.30906/0869-2092-2020-83-10-33-39
  3. Павлова С.И., Албегова Д.З., Кягова А.А., Козлов И.Г. Механизмы иммуносупрессивной активности флавоноидов корня солодки при контактной чувствительности у мышей: угнетение функций Т-лимфоцитов-эффекторов опосредуется неэффекторными клетками // Медицинская иммунология. - 2010. - Т. 12, № 6. - С. 503-510. doi: 10.15789/1563-0625-2010-6-503-510.
  4. Павлова С.И., Албегова Д.З., Дмитриева Н.В., Дибирова Г.О., Козлов И.Г. Флавоноиды корня солодки влияют на функции активированных Т-лимфоцитов мыши и человека // Российский иммунологический журнал. - 2011. - Т. 5, № 14. - С. 62-68.
  5. Солёнова Е.А., Павлова С.И. Антибактериальные и иммунотропные свойства изоликвиритигенина при генерализованной стафилококковой инфекции у мышей // Фармация и фармакология. - 2020. - Vol.8, No.3. - P.78-85. doi: 10.19163/2307-9266-2020-8-3-78-85.
  6. Percie du Sert N., Hurst V., Ahluwalia A., Alam S., Avey M.T., Baker M., Browne W.J., Clark A., Cuthill I.C., Dirnagl U., Emerson M., Garner P., Holgate S.T., Howells D.W., Karp N.A., Lazic S.E., Lidster K., MacCallum C.J., Macleod M., Pearl E.J., Petersen O., Rawle F., Peynolds P., Rooney K., Sena E.S., Silberberg S.D., Steckler T., Wurbel H. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research // PLoS Biol. 2020. - Vol.18, No.7. - e3000410. doi: 10.1371/journal.pbio.3000410.
  7. Lehmann A. K., Sornes S., Halstensen A. Phagocytosis: measurement by flow cytometry // J Immunol Methods. - 2000. - Vol. 243, No. 1-2. - P. 229-242. doi: 10.1016/s0022-1759(00)00237-4.
  8. Miyazaki S., Ishikawa F., Fujikawa T., Nagata S., Yamaguchi K. Intraperitoneal Injection of Lipopolysaccharide Induces Dynamic Migration of Gr-1high Polymorphonuclear Neutrophils in the Murine Abdominal Cavity // Clinical Diagn Lab Immunol. - 2004. - Vol.11, No.3. - P.452-457.doi: 10.1128/CDLI.11.3.452-457.2004.
  9. Qiao H., Zhang X., Wang T., Liang L., Chang W., Xia H. Pharmacokinetics, biodistribution and bioavailability of isoliquiritigenin after intravenous and oral administration // Comparative Study Pharm Biol. - 2014. - Vol. 52, No.2. - P.228-236. doi: 10.3109/13880209.2013.832334.
  10. Han Y.J., Kang B., Yang E.-J., Choi M.-K., I.-S. Song . Simultaneous Determination and Pharmacokinetic Characterization of Glycyrrhizin, Isoliquiritigenin, Liquiritigenin, and Liquiritin in Rat Plasma Following Oral Administration of Glycyrrhizae Radix Extract // Molecules. - 2019. - Vol. 24, No. 9. - P. 1816. DOI: 0.3390/molecules24091816.
  11. Yang Y., BazhinA.V., Werner J., Karakhanova S. Reactive oxygen species in the immune system // Int Rev Immunol. - 2013. - Vol. 32, No.3. - P. 249-270. doi: 10.3109/08830185.2012.755176.
  12. Preiser J.-C. Oxidative stress //JPEN J Parenter Enteral Nutr. - 2012. - Vol. 36, No.2. - Р. 147-154.doi: 10.1177/0148607111434963.
  13. Segal A.W. How neutrophils kill microbes // Annu Rev Immunol. - 2005. - Vol. 23. - P. 197-223. doi: 10.1146/annurev.immunol.23.021704.115653.
  14. Tauber A.I., Brettler D.B., Kennington E.A., Blumberg P. M. Relation of Human Neutrophil Phorbol Ester Receptor Occupancy and NADPH-Oxidase Activity //Blood. - 1982. - Vol. 60, No.2. - P. 333-339.
  15. Winterbourn С.С. Reconciling the chemistry and biology of reactive oxygen species //Nat Chem Biol. - 2008. - Vol. 4, No.5. - P. 278-286.doi: 10.1038/nchembio.85.
  16. Delgado-Rizo V., Martínez-Guzmán M.A., Iñiguez-Gutierrez L., García-Orozco A., Alvarado-Navarro A., Fafutis-Morris M. Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview //Front Immunol. - 2017. - Vol. 8, No.81. doi: 10.3389/fimmu.2017.00081.
  17. Vong L., Lorentz R.J., Assa A., Glogauer M., Sherman P.M. Probiotic Lactobacillus rhamnosus inhibits the formation of neutrophil extracellular traps // J Immunol. - 2014. - Vol. 192. - P. 1870-1877. doi: 10.4049/jimmunol.1302286.
  18. Fadini G.P., Menegazzo L., Rigato M., Scattolini V., Poncina N., Bruttocao A., Ciciliot S., Mammano F., Ciubotaru C.D., Brocco E., Marescotti M.C., Cappellari R., Arrigoni G., Millioni R., Vigili de Kreutzenberg S., Albiero M., Avogaro A. NETosis delays diabetic wound healing in mice and humans // Diabetes. - 2016. - Vol. 65. - P.1061-1071. doi: 10.2337/db15-0863.
  19. Beiter K., Wartha F., Albiger B., Normark S., Zychlinsky A., Henriques-Normark B. An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps // Curr Biol. - 2006. - Vol. 16. - P.401-407. doi: 10.1016/j.cub.2006.01.056.
  20. Kirchner T., Hermann E., Möller S., Klinger M., Solbach W., Laskay T., Behnen M. Flavonoids and 5-aminosalicylic acid inhibit the formation of neutrophil extracellular traps //Mediators Inflamm. - 2013. - Vol.2013. doi: 10.1155/2013/710239.
  21. Yang S.-C., Chen P.-J., Chang S.-H., Weng Y.-T., Chang F.R., Chang K.Y., Chen C.-Y., Kao T.-I., Hwang T.-L. Luteolin attenuates neutrophilic oxidative stress and inflammatory arthritis by inhibiting Raf1 activity // Biochem Pharmacol. - 2018. - Vol. 154. - P. 384-396. doi: 10.1016/j.bcp.2018.06.003.
  22. Vargas J.E., Souto A.A., Pitrez P.M.C., Stein R.T., Porto B.N. Modulatory potential of resveratrol during lung inflammatory disease // Med Hypotheses. - 2016. - Vol. 96. - P. 61-65. doi: 10.1016/j.mehy.2016.09.023.
  23. de la Lastra C.A., Villegas I. Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications // Biochemical Society Transactions. 2007. Vol. 35, Pt 5. - P.1156-1560. doi: 10.1042/BST0351156.
  24. Galati G., Sabzevari O., Wilson J. X. , O'Brien P.J. Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics // Toxicology. - 2002. - Vol.177, No.1. - P. 91-104. doi: 10.1016/s0300-483x (02)00198-1.
  25. Madrigal-Perez L.A., Ramos-Gomez M. Resveratrol Inhibition of Cellular Respiration: New Paradigm for an Old Mechanism // Int J Mol Sci. - 2016. - Vol.17, No.3. - P. 368. doi: 10.3390/ijms17030368.
  26. Eghbaliferiz S., Iranshahi M. Prooxidant Activity of Polyphenols, Flavonoids, Anthocyanins and Carotenoids: Updated Review of Mechanisms and Catalyzing Metals // Phytother Res. - 2016. - Vol. 30, No.9. - P. 1379-1391. doi: 10.1002/ptr.5643.
  27. Yuan X., Zhang B., Chen N., Chen X.-Y., Liu L.-L., Zheng Q.-S., Wang Z.P. Isoliquiritigenin treatment induces apoptosis by increasing intracellular ROS levels in HeLa cells //J Asian Nat Prod Res. - 2012. Vol.14, No.8. - P. 789-798. doi: 10.1080/10286020.2012.694873.
  28. Calabrese E.J., Mattson M. P., Calabrese V. Resveratrol commonly displays hormesis: occurrence and biomedical significance // Hum Exp Toxicol. - 2010. - Vol. 29, No.12. - P.980-1015. doi: 10.1177/0960327110383625.

Copyright (c) 2021 Solenova E.A., Pavlova S.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies