ENCAPSULATION OF ANTITUBERCULAR DRUGS BY BIOPOLYMERS AND POLYELECTROLYTE MULTILAYERS


Cite item

Full Text

Abstract

The problem of drug-resistant tuberculosis treatment is complex and urgent: the standardof treatment includes the oral administration of six names of antibiotics, i.e. up totwenty tablets a day by the patient. This causes severe side effects, including those appeareddue to the formation of toxic products of drug interactions in the body. Therefore, itis important that some drugs dissolve in a stomach, and others – in the intestine, which willlead to increased bioavailability, reduced dosage and toxicity. The development of targeteddelivery systems for drugs with controlled release, targeted delivery and minimization ofside effects are of interest. One of the promising methods is polyelectrolytic multilayersand the technology of creating such layers by a step-by-step adsorption of heterogeneouslycharged polyelectrolytes.The aim of this article is the microencapsulation of anti-tuberculousdrugs into biopolymers coated with polyelectrolytic multilayers, and the solubilitystudy of microcapsules at pH values simulating various parts of the gastrointestinal tract.Materials and methods. Drugs as isoniazide, pyrazinamide, moxifloxacin, and biopolymers:gellan, pectin and sodium alginate, chitosan and dextran sulfate, as well as EudragitS are used to prepare microcapsules. The obtained microcapsules are studied by a methodof scanning electron microscopy. Quantitative determination of the effectiveness of the inclusionof drugs in microcapsules was carried out using pharmacopoeial methods.Results and discussion. The inclusion efficiency rises with an increase of biopolymer concentration. The inclusion efficiency increases in the row isoniazide

About the authors

B. H. Mussabayeva

Shakarim State University of Semey

Email: kaf.him@post.semgu.kz

K. B. Murzagulova

Shakarim State University of Semey; Ph C “Romat”

Email: murzagulova@inbox.ru

M. E. Kim

Ph C “Romat”

Email: fake@neicon.ru

V. A. Izumrudov

Lomonosov Moscow State University

Email: fake@neicon.ru

Z. Zh. Aripzhanova

Shakarim State University of Semey

Email: fake@neicon.ru

References

  1. WHO Global tuberculosis report 2015: URL: http://who.int/tb/publications. (дата обращения: 19. 02. 2016).
  2. Pavlukhina S., Sukhishvili S. POLYMER ASSEMBLIES FOR CONTROLLED DELIVERY OF BIOACTIVE MOLECULES FROM SURFACES // Adv Drug Deliv Rev. 2011. Vol. 63. P. 822-836. doi: 10.1016/j.addr.2011.03.017
  3. Kaur Kirtipal, Gupta Anuj, R.K. Narang, R.S.R. Murthy. NOVEL DRUG DELIVERY SYSTEMS: DESIRED FEAT FOR TUBERCULOSIS // J. Adv. Pharm. Tech. Res. 2010. Vol. 1. No. 2. P. 145-163.
  4. Soike T., Streff A.K., Guan C., Ortega R., Tantawy M., Pino C., Shastri V.P. ENGINEERING A MATERIAL SURFACE FOR DRUG DELIVERY AND IMAGING USING LAYER-BY-LAYER ASSEMBLY OF FUNCTIONALIZED NANOPARTICLES // Advanced Materials. 2010. Vol. 22. No. 12. P. 1392–1397. doi: 10.1002/adma.200903069
  5. Garcia-Co ntreras L., Sethuraman V., Kazantseva M., Godfrey V., Hickey A.J. EVALUATION OF DOSING REGIMEN OF RESPIRABLE RIFAMPICIN BIODEGRADABLE MICROSPHERES IN THE TREATMENT OF TUBERCULOSIS IN THE GUINEA PIG // Journal of Antimicrobial Chemotherapy. Vol. 58. 2006. P. 980-986. doi: 10.1093/jac/dkl369
  6. Farnaz E., Mahdi H., Mazda R., Samadi N., Atyabi F., Dinarvand R. PREPARATION AND ANTIBACTERIAL ACTIVITY EVALUATION OF RIFAMPICIN-LOADED POLY LACTIDE-CO-GLYCOLIDE NANOPARTICLES // Nanomedicine: Nanotechnology, Biology and Medicine. 2007. Vol. 3. No. 2. P. 161-167. doi: 10.1016/j.nano.2007.03.003
  7. Muthu M., Vetriselvan S., Narra Kishore Yadav, Raja MD, Senthil Kumar C., Mohamed Raffick M., Vignesh M., Selvakumar K., Joysa Ruby J., Parkavi V. PREPARATION AND EVALUATION OF ALGINATE/CHITOSAN PARTICULATE SYSTEM FOR RIFAMPICIN RELEASE // International Journal of Pharmacy & Therapeutics. 2012. V. 3. No. 2. P. 215-220.
  8. Anil Kumar K.N., Basu Ray S., Nagaraja V., Raichur Ashok M. ENCAPSULATION AND RELEASE OF RIFAMPICIN USING POLY(VINYL PYRROLIDONE)-POLY(-METHACRYLIC ACID) POLYELECTROLYTE CAPSULES // Materials Science and Engineering. Vol. 29. No. 8. 2009. P. 2508-2513. doi: 10.1016/j.msec.2009.07.019
  9. Мустафин Р.И., Буховец А.В., Гарипова В.Р., Ситенков А.Ю., Шамсутдинова А.Р., Кеменова В.А., Ромбаут П., Ван ден Моотер Г. СРАВНИТЕЛЬНАЯ ОЦЕНКА НОВЫХ НОСИТЕЛЕЙ ДЛЯ КОНТРОЛИРУЕМОЙ ДОСТАВКИ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ НА ОСНОВЕ EUDRAGIT® EPO/L100 ИНТЕРПОЛИЭЛЕКТРОЛИТНЫХ КОМПЛЕКСОВ // Хим.- фарм. журнал. 2012. Т. 46. № 8. P. 42-46.
  10. Pandey R, Sharma A, Zahoor A, Sharma S, Khuller GK, Prasad B. POLY (D,L-LACTIDE-COGLYCOLIDE) NANOPARTICLE-BASED INHALABLE SUSTAINED DRUG DELIVERY SYSTEM FOR EXPERIMENTAL TUBERCULOSIS // J. Antimicrob. Chemother. 2003. Vol. 52. P. 981-986. doi: 10.1093/jac/dkg477
  11. Sabitha P., Vijaya Ratna J. and Ravindra Reddy K. DESIGN AND EVALUATION OF CONTROLLED RELEASE CHITOSAN-CALCIUM ALGINATE MICROCAPSULES OF ANTITUBERCULAR DRUGS FOR ORAL USE // Int. J. Chem. Technol. Res. 2010. Vol. 2. No.1. P. 88-98.
  12. Devi M. G., Dutta S., Al Hinai A. T., Feroz S. STUDIES ON ENCAPSULATION OF RIFAMPICIN AND ITS RELEASE FROM CHITOSAN-DEXTRAN SULFATE CAPSULES // Korean Journal of Chemical Engineering. 2015. Vol. 32. No. 1. P.118-124. doi: 10.1007/s11814-014-0161-9
  13. Балабушевич Н. Г., Изумрудов В.А., Ларионова Н.И. БЕЛКОВЫЕ МИКРОЧАСТИЦЫ С КОНТРОЛИРУЕМОЙ СТАБИЛЬНОСТЬЮ, ПОЛУЧЕННЫЕ ПОСЛОЙНОЙ АДСОРБЦИЕЙ БИОПОЛИЭЛЕКТРОЛИТОВ (ОБЗОР) // Высокомолекулярные соединения. Серия А. 2012. Т. 54. № 7. С. 1116–1130.
  14. Государственная Фармакопея Республики Казахстан: в 2 т. Алматы: «Жибек жолы», 2009. т. 2. 804 с.

Copyright (c) 2017 Mussabayeva B.H., Murzagulova K.B., Kim M.E., Izumrudov V.A., Aripzhanova Z.Z.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies