Method of Ensuring Semantic Interoperability in the Sensor Data Processing

Cover Page

Cite item

Full Text

Abstract

Introduction. Currently, the volume of sensor data from heterogeneous sources is significantly increasing. This leads to the need of improving the efficiency of sensor data management by addressing semantic interoperability. The aim of the work was to reduce the errors in interpreting sensor data by comparing and evaluating the similarity between descriptions of the parameters of measurement objects and the concepts used to describe measured quantities and units, utilizing semantic annotations. Methods. The research employs an ontological approach as its primary method. Since most sensor data pertains to the measurement of object parameters, the proposed method involves comparing and assessing the similarity of parameter descriptions based on an ontology of measured quantities, units of measurement, and sensor types. To achieve this, a semantic interoperability system is proposed for the Industrial Internet of Things (IIoT) and sensor systems. Additionally, a sequence diagram is developed to facilitate the exchange of requests and informational messages between IoT devices, the IIoT system, and the semantic interoperability system. Results. The resulting model, developed using expert knowledge, can support import substitution by enabling compatibility with new types of sensors.

Full Text

Restricted Access

About the authors

Aleksandr Yu. Grebeshkov

Volga State University of Telecommunications and Informatics

Author for correspondence.
Email: a.grebeshkov@psuti.ru
SPIN-code: 8872-4368

Doctor of Engineering Sciences, Associate Professor, Professor at the Department of Networks and Communication Systems

Russian Federation, Samara

Yana A. Batyrshina

Volga State University of Telecommunications and Informatics

Email: a.grebeshkov@psuti.ru
SPIN-code: 7314-1753

PhD student at the Department of Networks and Communication Systems

Russian Federation, Samara

References

  1. Saghiri A.M. Cognitive Internet of Things: Challenges and Solutions. Artificial Intelli-gence-based Internet of Things Systems. Springer; 2022:335–362. DOI: https://doi.org/10.1007/978-3-030-87059-1_13
  2. Yatskov N.N., Apanasovich V.V. Research of biophysical systems using algorithms of data mining and simulation modeling. Com-puter technologies and data analysis: pro-ceedings of the II International Scientific and Practical Conference (April, 23-24, Minsk). Minsk: Belarusian State University, 2020:120–123. EDN: KFZZRX (In Russ.).
  3. Vykhovanets V.S. The notional analisys and notional modelling. Large-scale Systems Control. 2021;(92):64–109. doi: 10.25728/ubs.2021.92.4; EDN: HZBQNZ (In Russ.).
  4. Borovskaya Ya.A., Grebeshkov A.Yu. The context-dependent model for ensuring the quality of sensor data processing in ICN. REDS: Telecommunication devices and Sys-tems. 2023;13(1):13-18. EDN: JWAUUK (In Russ.).
  5. Borovskaya Ya.A., Grebeshkov A.Yu. Compatibility provisioning of sensor sys-tems and industrial internet of things plat-forms. Infokommunikacionnye Tehnologii. 2022;20(2):21-28. doi: 10.18469/ikt.2022.20.2.02; EDN: CBINVD (In Russ.).
  6. Borovskaya Ya.A., Grebeshkov A.Yu. The task of analyzing the interoperability of in-dustrial Internet plat-forms and sensor sys-tems based on an ontological approach. Pro-ceedings of the VII Interna-tional Confer-ence and Youth School (September, 20-24). Samara: Samara National Research Universi-ty named after Academic S.P. Korolev, 2021;3:031052. EDN: GSXNJZ (In Russ.).
  7. Borodin A.S., Moskalenko T.A., Kirichek R.V. The architecture of industrial internet of things. Telecom IT. 2017;5(4):49–56 (In Russ.). EDN: YPBUQO
  8. Makarenko S.I., Solovyeva O.S. Semantic interoperability of the interaction of ele-ments in network-centric systems. Radio Electronics. 2021;(6):1-31. doi: 10.30898/1684-1719.2021.6.3; EDN: FUZTJY (In Russ.).
  9. Gorshkov S.V., Gumerov S.Z., Kralin S.S. et al. Ontological modeling of enterprises: methods and technologies. Yekaterinburg: Publishing house of the Ural University; 2019. 236 p. (In Russ.).
  10. Kryukov KV, Pankova LA. Measures of semantic proximity in ontology. Control Sci-ences. 2010;(5):2-14. EDN: MUVNSP (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of the system for ensuring semantic compatibility of sensors and IIoT systems

Download (194KB)
3. Fig. 2. Diagram of the sequence of information message exchange between sensors, Industrial Internet system and semantic compatibility system

Download (20KB)
4. Fig. 3. Matrix of relations between sensors and measured values

Download (18KB)
5. Fig. 4. Scheme of relations between conceptual notions

Download (318KB)
6. Fig. 5. Contents of the response to the sensor properties query

Download (165KB)
7. Fig. 6. Contents of the additional request about sensor features

Download (172KB)

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).