Numerical simulation of the propagation of a shock wave above the dense layer of particles using the Baer–Nunziato system of equations
- Autores: Chuprov P.A.1, Poroshyna Y.E.1, Utkin P.S.1
-
Afiliações:
- Institute for Computer Aided Design of the Russian Academy of Sciences
- Edição: Volume 15, Nº 2 (2022)
- Páginas: 67-74
- Seção: Articles
- URL: https://journals.rcsi.science/2305-9117/article/view/286747
- DOI: https://doi.org/10.30826/CE22150206
- EDN: https://elibrary.ru/NOEVES
- ID: 286747
Citar
Resumo
The paper presents the results of numerical simulation of experiments in which a shock wave of various intensity propagated over the surface of a dense layer of particles poured onto an impenetrable wall. The mathematical model is based on the two-dimensional system of Baer–Nunziato equations and takes into account intergranular stresses arising in the solid phase of particles. The computational algorithm is based on the HLLC method with a pressure relaxation procedure. The developed algorithm is efficient in the presence of strong discontinuities in the volume fraction of particles, typical for two-phase shock-wave problems associated with filling, a cloud, or a layer of particles, including locally supersonic gas flow regimes. Comparison with numerical and field experiments of other authors is carried out.
Palavras-chave
Sobre autores
Petr Chuprov
Institute for Computer Aided Design of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: petchu@mail.ru
(b. 1996) — junior research scientist
Rússia, 19/18, 2nd Brestskaya Str., Moscow 123056Yaroslava Poroshyna
Institute for Computer Aided Design of the Russian Academy of Sciences
Email: poroshina@phystech.edu
(b. 1996) — junior research scientist
Rússia, 19/18, 2nd Brestskaya Str., Moscow 123056Pavel Utkin
Institute for Computer Aided Design of the Russian Academy of Sciences
Email: pavel_utk@mail.ru
(b. 1985) — Candidate of Science in physics and mathematics, senior research scientist
Rússia, 19/18, 2nd Brestskaya Str., Moscow 123056Bibliografia
- Khomik, S. V., I. V. Guk, A. N. Ivantsov, S. P. Medvedev, E. K. Anderzhanov, A. I. Mikhaylin, M. V. Silnikov, and A. M. Tereza. 2021. Simulation of interaction between a spherical shock wave and a layer of granular material in a conical shock tube. Russ. J. Phys. Chem. B 15(4):685–690. doi: 10.1134/S199079312 1040175.
- Sugiyama, Y., T. Homae, T. Matsumura, and K. Wakabayashi. 2021. Numerical study on the mitigation effect of glass particles filling a partially confined space on a blast wave. Int. J. Multiphas. Flow 136:103546. doi: 10.1016/ j.ijmultiphaseflow.2020.103546.
- Baer, M. R., and J. W. Nunziato. 1986. A two-phase mixture theory for the deflagration-to-detonation transition in reactive granular materials. Int. J. Multiphas. Flow 12(6):861–889. doi: 10.1016/0301-9322(86)90033-9.
- Furfaro, D., and R. Saurel. 2015. A simple HLLC-type Riemann solver for compressible non-equilibrium two-phase flows. Comput. Fluids 111:159–178. doi: 10.1016/ j.compfluid.2015.01.016.
- Gelfand, B. E., S. P. Medvedev, A. A. Borisov, A. N. Polenov, S. M. Frolov, and S. A. Tsyganov. 1989. Shock loading of stratified dusty systems. Archivum Combustionis 9(4):153–165.
- Fan, B. C., Z. H. Chen, X. H. Jiang, and H. Z. Li. 2007. Interaction of a shock wave with a loose dusty bulk layer. Shock Waves 16:179–187. doi: 10.1007/s00193-006-0059-5.
- Khmel’, T. A., and A. V. Fedorov. 2015. Numerical simulation of dust dispersion using molecular-kinetic model for description of particle-to-particle collisions. J. Loss Prevent. Proc. 36:223–229. doi: 10.1016/j.jlp.2015.02.006.
- Houim, R., and E. Oran. 2016. A multiphase model for compressible granular-gaseous flows: Formulation and initial tests. J. Fluid Mech. 789:166–220. doi: 10.1017/ jfm.2015.728.
- Gidaspow, D. 1994. Multiphase flow and fluidization. Academic Press. 467 p.
- Saurel, R., and R. Abrall. 1999. A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150:425–467. doi: 10.1006/ jcph.1999.6187.
- Bdzil, J. B., R. Menikoff, S. F. Son, A. K. Kapila, and D. S. Stewart. 1999. Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues. Phys. Fluids 11(2):378–402. doi: 10.1063/1.869887.
- Schwendeman, D. W., C. W. Wahle, and A. K. Kapila. 2008. A study of detonation evolution and structure for a model of compressible two-phase reactive flow. Combust. Theor. Model. 12(1):159–204. doi: 10.1080/ 13647830701564538.
- Poroshyna, Ya. E., and P. S. Utkin. 2021. Numerical simulation of a normally incident shock wave – dense particles layer interaction using the Godunov solver for the Baer–Nunziato equations. Int. J. Multiphas. Flow 142:103718. doi: 10.1016/j.ijmultiphaseflow.2021.103718.
- Utkin, P. S. 2017. Mathematical modeling of the interaction of a shock wave with a dense cloud of particles within the framework of the two-fluid approach. Russ. J. Phys. Chem. B 11(6):963–973. doi: 10.1134/ S1990793117050141.
- Rogue, X., G. Rodriguez, J. F. Haas, and R. Saurel. 1998. Experimental and numerical investigation of the shock-induced fluidization of a particles bed. Shock Waves 8:29–45. doi: 10.1007/s001930050096.
- Saurel, R., N. Favrie, F. Petitpas, M.-H. Lallemand, and S. L. Gavrilyuk. 2010. Modelling dynamic and irreversible powder compaction. J. Fluid Mech. 664:348–396. doi: 10.1017/S0022112010003794.
- Chuprov, P., P. Utkin, and S. Fortova. 2021. Numerical simulation of a high-speed impact of metal plates using a three-fluid model. Metals — Basel 11(8):1233. doi: 10.3390/met11081233.
- Schwendeman, D. W., C. W. Wahle, and A. K. Kapila. 2006. The Riemann problem and high-resolution Godunov method for a model of compressible two-phase flow. J. Comput. Phys. 212:490–526. doi: 10.1016/ j.jcp.2005.07.012.
- Woodward, P., and P. Colella. 1984. The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54:115. doi: 10.1016/0021-9991(84)90142-6.
- Quirk, J. J. 1994. A contribution to the great Riemann solver debate. Int. J. Numer. Meth. Fl. 18(6):555. doi: 10.1002/fld.1650180603.
Arquivos suplementares
