Numerical simulation of the propagation of a shock wave above the dense layer of particles using the Baer–Nunziato system of equations
- Authors: Chuprov P.A.1, Poroshyna Y.E.1, Utkin P.S.1
-
Affiliations:
- Institute for Computer Aided Design of the Russian Academy of Sciences
- Issue: Vol 15, No 2 (2022)
- Pages: 67-74
- Section: Articles
- URL: https://journals.rcsi.science/2305-9117/article/view/286747
- DOI: https://doi.org/10.30826/CE22150206
- EDN: https://elibrary.ru/NOEVES
- ID: 286747
Cite item
Abstract
The paper presents the results of numerical simulation of experiments in which a shock wave of various intensity propagated over the surface of a dense layer of particles poured onto an impenetrable wall. The mathematical model is based on the two-dimensional system of Baer–Nunziato equations and takes into account intergranular stresses arising in the solid phase of particles. The computational algorithm is based on the HLLC method with a pressure relaxation procedure. The developed algorithm is efficient in the presence of strong discontinuities in the volume fraction of particles, typical for two-phase shock-wave problems associated with filling, a cloud, or a layer of particles, including locally supersonic gas flow regimes. Comparison with numerical and field experiments of other authors is carried out.
About the authors
Petr A. Chuprov
Institute for Computer Aided Design of the Russian Academy of Sciences
Author for correspondence.
Email: petchu@mail.ru
(b. 1996) — junior research scientist
Russian Federation, 19/18, 2nd Brestskaya Str., Moscow 123056Yaroslava E. Poroshyna
Institute for Computer Aided Design of the Russian Academy of Sciences
Email: poroshina@phystech.edu
(b. 1996) — junior research scientist
Russian Federation, 19/18, 2nd Brestskaya Str., Moscow 123056Pavel S. Utkin
Institute for Computer Aided Design of the Russian Academy of Sciences
Email: pavel_utk@mail.ru
(b. 1985) — Candidate of Science in physics and mathematics, senior research scientist
Russian Federation, 19/18, 2nd Brestskaya Str., Moscow 123056References
- Khomik, S. V., I. V. Guk, A. N. Ivantsov, S. P. Medvedev, E. K. Anderzhanov, A. I. Mikhaylin, M. V. Silnikov, and A. M. Tereza. 2021. Simulation of interaction between a spherical shock wave and a layer of granular material in a conical shock tube. Russ. J. Phys. Chem. B 15(4):685–690. doi: 10.1134/S199079312 1040175.
- Sugiyama, Y., T. Homae, T. Matsumura, and K. Wakabayashi. 2021. Numerical study on the mitigation effect of glass particles filling a partially confined space on a blast wave. Int. J. Multiphas. Flow 136:103546. doi: 10.1016/ j.ijmultiphaseflow.2020.103546.
- Baer, M. R., and J. W. Nunziato. 1986. A two-phase mixture theory for the deflagration-to-detonation transition in reactive granular materials. Int. J. Multiphas. Flow 12(6):861–889. doi: 10.1016/0301-9322(86)90033-9.
- Furfaro, D., and R. Saurel. 2015. A simple HLLC-type Riemann solver for compressible non-equilibrium two-phase flows. Comput. Fluids 111:159–178. doi: 10.1016/ j.compfluid.2015.01.016.
- Gelfand, B. E., S. P. Medvedev, A. A. Borisov, A. N. Polenov, S. M. Frolov, and S. A. Tsyganov. 1989. Shock loading of stratified dusty systems. Archivum Combustionis 9(4):153–165.
- Fan, B. C., Z. H. Chen, X. H. Jiang, and H. Z. Li. 2007. Interaction of a shock wave with a loose dusty bulk layer. Shock Waves 16:179–187. doi: 10.1007/s00193-006-0059-5.
- Khmel’, T. A., and A. V. Fedorov. 2015. Numerical simulation of dust dispersion using molecular-kinetic model for description of particle-to-particle collisions. J. Loss Prevent. Proc. 36:223–229. doi: 10.1016/j.jlp.2015.02.006.
- Houim, R., and E. Oran. 2016. A multiphase model for compressible granular-gaseous flows: Formulation and initial tests. J. Fluid Mech. 789:166–220. doi: 10.1017/ jfm.2015.728.
- Gidaspow, D. 1994. Multiphase flow and fluidization. Academic Press. 467 p.
- Saurel, R., and R. Abrall. 1999. A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150:425–467. doi: 10.1006/ jcph.1999.6187.
- Bdzil, J. B., R. Menikoff, S. F. Son, A. K. Kapila, and D. S. Stewart. 1999. Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues. Phys. Fluids 11(2):378–402. doi: 10.1063/1.869887.
- Schwendeman, D. W., C. W. Wahle, and A. K. Kapila. 2008. A study of detonation evolution and structure for a model of compressible two-phase reactive flow. Combust. Theor. Model. 12(1):159–204. doi: 10.1080/ 13647830701564538.
- Poroshyna, Ya. E., and P. S. Utkin. 2021. Numerical simulation of a normally incident shock wave – dense particles layer interaction using the Godunov solver for the Baer–Nunziato equations. Int. J. Multiphas. Flow 142:103718. doi: 10.1016/j.ijmultiphaseflow.2021.103718.
- Utkin, P. S. 2017. Mathematical modeling of the interaction of a shock wave with a dense cloud of particles within the framework of the two-fluid approach. Russ. J. Phys. Chem. B 11(6):963–973. doi: 10.1134/ S1990793117050141.
- Rogue, X., G. Rodriguez, J. F. Haas, and R. Saurel. 1998. Experimental and numerical investigation of the shock-induced fluidization of a particles bed. Shock Waves 8:29–45. doi: 10.1007/s001930050096.
- Saurel, R., N. Favrie, F. Petitpas, M.-H. Lallemand, and S. L. Gavrilyuk. 2010. Modelling dynamic and irreversible powder compaction. J. Fluid Mech. 664:348–396. doi: 10.1017/S0022112010003794.
- Chuprov, P., P. Utkin, and S. Fortova. 2021. Numerical simulation of a high-speed impact of metal plates using a three-fluid model. Metals — Basel 11(8):1233. doi: 10.3390/met11081233.
- Schwendeman, D. W., C. W. Wahle, and A. K. Kapila. 2006. The Riemann problem and high-resolution Godunov method for a model of compressible two-phase flow. J. Comput. Phys. 212:490–526. doi: 10.1016/ j.jcp.2005.07.012.
- Woodward, P., and P. Colella. 1984. The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54:115. doi: 10.1016/0021-9991(84)90142-6.
- Quirk, J. J. 1994. A contribution to the great Riemann solver debate. Int. J. Numer. Meth. Fl. 18(6):555. doi: 10.1002/fld.1650180603.
Supplementary files
