Simulation of generation and propagation of shock/compression waves in bubbly media
- Authors: Gubin S.A.1, Sverchkov A.M.2, Sumskoy S.I.1
-
Affiliations:
- MEPhI National Research Nuclear University
- Scientific Technical Center of Industrial Safety Problems Research
- Issue: Vol 14, No 1 (2021)
- Pages: 47-58
- Section: Articles
- URL: https://journals.rcsi.science/2305-9117/article/view/286499
- DOI: https://doi.org/10.30826/CE21140106
- ID: 286499
Cite item
Abstract
A model and a numerical method are proposed for calculating the propagation of shock/compression waves in a bubbly medium in extended pipeline systems. The model considers the process in a one-dimensional approximation within the assumption of the mechanical, thermal, velocity, and phase equilibrium in the “vapor bubbles – liquid” system. The proposed model was implemented numerically using the Godunov’s approach. The model reproduces with good accuracy the available experimental data on the structure and parameters of circulating waves in a liquid and bubbly media. The possibility of generation of shock waves in pipelines with variable altitudes in the case of cavitation and subsequent collapse of cavitation zones is demonstrated. Contrary to the case of the conventional water hammer when the flow slows down due to valve closing, this effect can be considered as a localized water hammer; in the case of a “classic” water hammer, the flow is slowed down on closed valves. It has been shown by calculation that the collapse of the cavitation zones with the generation of pressure waves leads to an increase in the loads on the pipeline: the arising pressures are a factor of 1.5 higher as compared to the conventional water hammer.
About the authors
Sergey A. Gubin
MEPhI National Research Nuclear University
Author for correspondence.
Email: gubin_sa@mail.ru
Doctor of Science in Physics and Mathematics, Professor, Head of the Department of Chemical Physics
Russian Federation, 31, Kashirskoe Hwy, Moscow, 115409Andrey M. Sverchkov
Scientific Technical Center of Industrial Safety ProblemsResearch
Email: sumskoi@mail.ru
Researcher
Russian Federation, Bldg. 14, 13, Perevedenovsky Lane, Moscow, 105082Sergey I. Sumskoy
MEPhI National Research Nuclear University
Email: sumskoi@mail.ru
Candidate of Science in Technology, Associate Professor
Russian Federation, 31, Kashirskoe Hwy, Moscow, 115409References
- Gel’fand, B. E., S. A. Gubin, B. S. Kogarko, and S. M. Kogarko. 1973. Issledovanie voln szhatiya v smesi zhidkosti s puzyr’kami gaza [Study of compression waves in a mixture of liquid with gas bubbles]. Soviet Physics. Doklady 213(5):1043.
- Gel’fand, B. E., S. A. Gubin, B. S. Kogarko, S. M. Simakov, and E. V. Timofeev. 1975. Breakup of gas bubbles in a liquid by shock waves. Fluid Dyn. 10:579–583.
- Gel’fand, B. E., S. A. Gubin, R. I. Nigmatullin, and E. I. Timofeev. 1977. Vliyanie plotnosti gaza na droblenie puzyr’kov udarnymi volnami [Gas density influence on the bubble crushing by shock waves]. Soviet Physics. Doklady 235:292–294.
- Gel’fand, B. E., S. A. Gubin, and E. I. Timofeev. 1978. Reflection of plane shock waves from a solid wall in a gas bubble – liquid system. Fluid Dyn. 13:306–310.
- Gel’fand, B. E., V. V. Stepanov, E. I. Timofeev, and A. A. Tsyganov. 1978. Usilenie udarnykh voln v neravnovesnoy sisteme zhidkost’ – puzyr’ki rastvoryayushchegosya gaza [Amplification of shock waves in a nonequilibrium liquid – bubbles system of a dissolving gas]. Soviet Physics. Doklady 239(1):71.
- Borisov, A. A., B. E. Gel’fand, R. I. Nigmatulin, Kh. A. Rakhmatulin, and E. I. Timofeev. 1982. Usilenie udarnykh voln v zhidkostyakh s puzyr’kami para i rastvoryayushchegosya gaza [Amplification of shock waves in liquids with vapor and dissolving gas bubbles]. Soviet Physics. Doklady 263(3):594.
- Borisov, A. A., B. E. Gel’fand, and E. I. Timofeev. 1983. Shock waves in liquid containing gas bubbles. Int. J. Multiphas. Flow 9(5):531–543.
- Kedrinskii, V. K. 1968. [Propagation of perturbations in a liquid containing gas bubbles. J. Appl. Mech. Tech. Phy. 9(4):370–376.
- Kedrinskii, V. K. 1976. Negative pressure profile in cavitation zone at underwater explosion near free surface. Acta Astronaut. 3(7-8):623–632.
- Kedrinskii, V. K. 1980. Shock waves in a liquid containing gas bubbles. Combust. Explo. Shock Waves 16(5):495–504.
- Chernov, A. A., V. K. Kedrinskii, and M. N. Davydov. 2004. Spontaneous nucleation of bubbles in a gas – saturated melt under instantaneous decompression. J. Appl. Mech. Tech. Phy. 45(2):281–285.
- Komissarov, P. V., G. N. Sokolov, and A. A. Borisov. 2011. Characteristics of the underwater explosion of a nonideally detonating aluminum – rich energetic material. Russ. J. Phys. Chem. B 5(1):116–123.
- Komissarov, P. V., G. N. Sokolov, B. S. Ermolaev, and A. A. Borisov. 2011. Smesevye sostavy dlya podvodnykh vzryvov s usilennym deystviem za schet vklyucheniya vody kak vneshnego okislitelya i ikh vzryvnye kharakteristiki [Composite explosives for underwater explosions enhanced by inclusion of water as an external oxidizer and their performance. Physical-Chemical Kinetics in Gas Dynamics 12(1):5.
- Komissarov, P. V., A. A. Borisov, S. S. Basakina, and V.V. Lavrov. 2019. Enhancement of underwater blast wave directed from of a metallized explosive to a bubble channel in continuous water. Russ. J. Phys. Chem. B 13(4):585– 595.
- Avdeev, K. A., V. S. Aksenov, A. A. Borisov, R. R. Tukhvatullina, S. M. Frolov, and F. S. Frolov. 2015. Numerical simulation of momentum transfer from a shock wave to a bubbly medium. Russ. J. Phys. Chem. B 9(3):363–374.
- Avdeev, K. A., V. S. Aksenov, A. A. Borisov, R. R. Tukhvatullina, S. M. Frolov, and F. S. Frolov. 2015. Chislennoe modelirovanie vozdeystviya udarnoy volny na puzyr’kovuyu sredu [Numerical modeling of the impact of a shock wave on a bubble medium]. Goren. Vzryv (Mosk.) — Combustion and Explosion 8(2):45–56.
- Avdeev, K. A., V. S. Aksenov, A. A. Borisov, D. G. Sevastopoleva, R. R. Tukhvatullina, S. M. Frolov, F. S. Frolov, I. O. Shamshin, B. Basara, W. Edelbauer, and K. Pachler. 2017. Calculation of shock wave propagation in water containing reactive gas bubbles. Russ. J. Phys. Chem. B 11(2):261–271.
- Tukhvatullina, R. R., and S. M. Frolov. 2017. Udarnye volny v zhidkosti, soderzhashchey inertnye i reaktsionnosposobnye gazovyye puzyr’ki [Shock waves in a liquid containing inert and reactive gas bubbles]. Goren. Vzryv (Mosk.) — Combustion and Explosion 10(2):52-61.
- Pchelnikov, A. V., A. I. Grazhdankin, I. A. Kruchinina, S. I. Sumskoi, Yu. A. Dadonov, and M. V. Lisanov. 2004. Otsenka riska avariy na ob’ektakh khraneniya i perevalki nefti i nefteproduktov [Assessment of the risk of accidents at storage facilities and transshipment of oil and oil products]. Occupational Safety in Industry 6:33–37.
- Sumskoi, S. I., A. A. Agapov, A. S. Sofin, A. M. Sverchkov, and A. F. Egorov. 2014. Modelirovanie avariynykh utechek na magistral’nykh nefteprovodakh [Simulation of emergency leaks on main oil pipelines]. Occupational Safety in Industry 9:50–53.
- Zhukovsky, N. E. 1949. O gidravlicheskom udare v vodoprovodnykh trubakh [About water hammer in water pipes]. Moscow–Leningrad: State Publishing House of Technical and Theoretical Literature. 104 p.
- Il’ichev, A. T., S. I. Sumskoi, and V. A. Shargatov. 2018. Unsteady flows in deformable pipes: The energy conservation law]. P. Steklov Inst. Math. 300(1):68–77.
- Charny, I. A. 1951. Neustanovivsheyesya dvizheniye real’noy zhidkosti v trubakh [Unsteady motion of a real liquid in pipes]. Leningrad: State Publishing House of Technical and Theoretical Literature. 222 p.
- Colebrook, C. F. 1939. Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws. P. I. Civil Eng. 11:133.
- Lockhart, R. W., and R. C. Martinelli. 1949. Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chem. Eng. Prog. 45:695.
- Lagumbay, R. S. 2006. Modeling and simulation of multi-phase/multicomponent flows. Department of Mechanical Engineering, The University of Colorado. Ph.D. Thesis. 243 p.
- Lurie, M. V. 2012. Matematicheskoe modelirovanie protsessov truboprovodnogo transporta nefti, nefteproduktov i gaza [Mathematical modeling of the processes of pipeline transportation of oil, oil products, and gas]. Moscow: Publishing Center of the Gubkin’s Russian State University of Oil and Gas. 456 p.
- Gubin, S. A., T. V. Gubina, S. I. Sumskoi, and M. V. Lisanov. 2013. Modelirovanie perekhodnykh i avariynykh protsessov v magistral’nykh nefteprovodakh s pomoshch’yu metoda S. K. Godunova [Modeling of transient and emergency processes in main oil pipelines using the method of S. K. Godunov]. Occupational Safety in Industry 10:66–71.
- Sumskoi, S. I., and A. M. Sverchkov. 2015. Modeling of non-equilibrium processes in oil trunk pipeline using Godunov type method. Physcs. Proc. 72:347–350.
- Sumskoi, S. I., A. M. Sverchkov, M. V. Lisanov, and A. F. Egorov. 2016. Modelling of non-equilibrium flow in the branched pipeline systems. J. Phys. Conf. Ser. 751(1):012022.
- Sumskoi, S. I., A. M. Sverchkov, M. V. Lisanov, and A. F. Egorov. 2016. Simulation of compression waves / shock waves propagation in the branched pipeline systems with multi-valve operations. J. Phys. Conf. Ser. 751(1):012024.
- Sumskoi, S. I., A. S. Sofin, and M. V. Lisanov. 2016. Developing the model of non-stationary processes of motion and discharge of single and two-phase medium at emergency releases from pipelines. J. Phys. Conf. Ser. 751(1):012025.
- Bergant, A., and A. R. Simpson. 1999. Pipeline column separation flow regimes. J. Hydraul. Eng. 125(8):835–848.
- Arbuzov, N. S. 2014. Obespechenie tekhnologicheskoy bezopasnosti gidravlicheskoy sistemy morskikh neftenalivnykh terminalov v protsesse naliva sudov u prichal’nykh sooruzheniy [Ensuring the technological safety of the hydraulic system of offshore oil-loading terminals in the process of loading ships at berthing facilities]. Moscow. D. Sc. Diss. 310 p.
Supplementary files
