Modelling natural light in a room with a lattice smart window

Cover Page

Cite item

Full Text

Abstract

Introduction. A method for modelling natural lighting in rooms with a new type of smart windows with lattice optical filter is proposed. Numerous BPS computer programmes do not have appropriate functions for modelling in rooms with grating smart windows due to their distinctive features and novelty. The method for calculating the Continuous Daylight Autonomy (cDA) was modified and numerical modelling was carried out on its basis.Materials and methods. Methods for calculating the geometric parameters of the grating filter and the temporal characteristics of the light transmission of a smart window are presented, and a method for calculating the cDA index in a room with a grating smart window located at an optimal angle adapted to the trajectory of the Sun relative to the window is developed.Results. The results of numerical modelling according to the developed method for a triple-glazed window with thermochromic material with a switching temperature of 25 °C in a building in Orenburg were obtained. For the hottest period in June, July and August, the cDA index is calculated in the coloured state of the thermochromic filter material, for other months its uncoloured state is taken. The advantage of lattice smart windows over traditional ones is shown in the form of increased illumination both in the colored and uncoloured states of the thermochromic material. By letting in more diffuse light while blocking direct light at a predetermined time, grating windows provide a more uniform year-round distribution of illumination throughout the depth of the room.Conclusions. Lattice smart windows are recommended for the eastern, southern and western facades of buildings with daytime operation mode to achieve more comfortable daylight conditions at workplaces and minimize energy consumption and costs for heating, ventilation, air conditioning.

About the authors

R. S. Zakirullin

Orenburg State University; Scientific Research Institute of Building Physics of the Russian Academy of Architecture and Building Sciences

Email: rustam.zakirullin@gmail.com
ORCID iD: 0000-0002-9954-3480

I. A. Odenbaкh

Orenburg State University; Scientific Research Institute of Building Physics of the Russian Academy of Architecture and Building Sciences

Email: irina.odenbakh23@gmail.com
ORCID iD: 0000-0002-9284-2162

V. A. Girin

Orenburg State University; Scientific Research Institute of Building Physics of the Russian Academy of Architecture and Building Sciences

Email: vladimirgirin@gmail.com
ORCID iD: 0000-0002-1323-9235

E. V. Pikalova

Orenburg State University

Email: slyotina.evgenia@yandex.ru

References

  1. Mahdavi A. In the matter of simulation and buildings: some critical reflections // Journal of Building Performance Simulation. 2019. Vol. 13. Issue 1. Рр. 26–33. doi: 10.1080/19401493.2019.1685598
  2. Kim Y.S., Shin H.S., Park C.S. Model predictive lighting control for a factory building using a deep deterministic policy gradient // Journal of Building Performance Simulation. 2022. Vol. 15. Issue 2. Рр. 174–193. doi: 10.1080/19401493.2021.2019310
  3. Da Silva P.C., Leal V., Andersen M. Occupants’ behaviour in energy simulation tools: lessons from a field monitoring campaign regarding lighting and shading control // Journal of Building Performance Simulation. 2015. Vol. 8. Issue 5. Рр. 338–358. doi: 10.1080/19401493.2014.953583
  4. Табунщиков Ю.А. Окно как интеллектуальный элемент конструкции здания // Энергосбережение. 2008. № 2. С. 16–21. EDN IJPYSZ.
  5. Casini M. Smart buildings: advanced materials and nanotechnology to improve energy-efficiency and environmental performance. Woodhead Publishing, 2016.
  6. Rezaei S.D., Shannigrahi S., Ramakrishna S. A review of conventional, advanced, and smart glazing technologies and materials for improving indoor environment // Solar Energy Materials and Solar Cells. 2017. Vol. 159. Рр. 26–51. doi: 10.1016/j.solmat.2016.08.026
  7. Desideri U., Asdrubali F. Handbook of energy efficiency in buildings. 1 Ed. Butterworth-Heinemann, 2018. 858 р.
  8. Casini M. Active dynamic windows for buildings : a review // Renewable Energy. 2018. Vol. 119. Рр. 923–934. doi: 10.1016/j.renene.2017.12.049
  9. Kheiri F. A multistage recursive approach in time- and frequency-domain for thermal analysis of thermochromic glazing and thermostatic control systems in buildings // Solar Energy. 2020. Vol. 208. Pр. 814–829. doi: 10.1016/j.solener.2020.08.019
  10. Zhao X., Mofid S.A., Jelle B.P., Tan G., Yin X., Yang R. Optically-switchable thermally-insulating VO2-aerogel hybrid film for window retrofits // Applied Energy. 2020. Vol. 278. P. 115663. doi: 10.1016/j.apenergy.2020.115663
  11. Kong M., Egbo K., Liu C.P., Hossain M.K., Tso C.Y., Chao C.Y.H. et al. Rapid thermal annealing assisted facile solution method for tungsten-doped vanadium dioxide thin films on glass substrate // Journal of Alloys and Compounds. 2020. Vol. 833. P. 155053. doi: 10.1016/j.jallcom.2020.155053
  12. Seeboth A., Ruhmann R., Mühling O. Thermotropic and thermochromic polymer based materials for adaptive solar control // Materials. 2010. Vol. 3. Issue 12. Pр. 5143–5168. doi: 10.3390/ma3125143
  13. Ogawa S., Ono Y., Takahashi I. Glass transition behavior of perpendicularly aligned thermotropic liquid crystalline phases consisting of long-chain trehalose lipids // Journal of Molecular Liquids. 2020. Vol. 298. P. 111954. doi: 10.1016/j.molliq.2019.111954
  14. Szukalski A., Korbut A., Ortyl E. Structural and light driven molecular engineering in photochromic polymers // Polymer. 2020. Vol. 192. P. 122311. doi: 10.1016/j.polymer.2020.122311
  15. Colombi G., Cornelius S., Longo A., Dam B. Structure model for anion-disordered photochromic Gadolinium Oxyhydride thin films // The Journal of Physical Chemistry C. 2020. Vol. 124. Issue 25. Рр. 13541–13549. doi: 10.1021/acs.jpcc.0c02410
  16. Liu J., Lu Y., Li J., Lu W. UV and X-ray dual photochromic properties of three CP. based on a new viologen ligand // Dyes and Pigments. 2020. Vol. 177. P. 108276. doi: 10.1016/j.dyepig.2020.108276
  17. Chen P.W., Chang C.T., Ko T.F., Hsu S.C., Li K.D., Wu J.Y. Fast response of complementary electrochromic device based on WO3/NiO electrodes // Scientific Reports. 2020. Vol. 10. Issue 1. doi: 10.1038/s41598-020-65191-x
  18. Li W., Zhang X., Chen X., Zhao Y., Wang L., Chen M. et al. Lithiation of WO3 films by evaporation method for all-solid-state electrochromic devices // Electrochimica Acta. 2020. Vol. 355. P. 136817. doi: 10.1016/j.electacta.2020.136817
  19. Zhang W., Chen X., Wang X., Zhu S., Wang S., Wang Q. Pulsed electrodeposition of nanostructured polythiothene film for high-performance electrochromic devices // Solar Energy Materials and Solar Cells. 2021. Vol. 219. P. 110775. doi: 10.1016/j.solmat.2020.110775
  20. Ismail A.H., Yahya N.A.M., Mahdi M.A., Yaacob M.H., Sulaiman Y. Gasochromic response of optical sensing platform integrated with polyaniline and poly(3,4-ethylenedioxythiophene) exposed to NH3 gas // Polymer. 2020. Vol. 192. P. 122313. doi: 10.1016/j.polymer.2020.122313
  21. Hu C.-W., Nishizawa K., Okada M., Yamada Y., Watanabe H., Tajima K. Roll-to-roll production of Prussian blue/P. nanocomposite films for flexible gasochromic applications // Inorganica Chimica Acta. 2020. Vol. 505. P. 119466. doi: 10.1016/j.ica.2020.119466
  22. Соловьёв А.К. Современные подходы к нормированию естественного освещения жилых зданий. Результаты исследований // Светотехника. 2020. № 4. С. 5–10. EDN RWIEAU.
  23. Патент RU № 2509324. Способ регулирования направленного светопропускания / Р.С. Закируллин; заявл. № 2012130148/28 от 05.11.2010; опубл. 03.10.2014. Бюл. № 7. 3 с.
  24. Патент RU № 2677069. Способ углового регулирования направленного светопропускания окна / Р.С. Закируллин; заявл. № 2017144699 от 12.07.2017; опубл. 15.01.2019. Бюл. № 2. 2 с.
  25. Zakirullin R.S. Optimized angular selective filtering of direct solar radiation // Journal of the Optical Society of America A. 2018. Vol. 35. Issue 9. P. 1592. doi: 10.1364/JOSAA.35.001592
  26. Zakirullin R.S. A smart window for angular selective filtering of direct solar radiation // Journal of Solar Energy Engineering. 2020. Vol. 142. Issue 1. doi: 10.1115/1.4044059
  27. Zakirullin R.S. Chromogenic materials in smart windows for angular-selective filtering of solar radiation // Materials Today Energy. 2020. Vol. 17. P. 100476. doi: 10.1016/j.mtener.2020.100476
  28. Закируллин Р.С., Оденбах И.А. Динамический контроль естественного освещения с помощью смарт-окна с решеточным оптическим фильтром // Светотехника. 2021. № 3. С. 47–51. EDN SLEWEW.
  29. Закируллин Р.С., Оденбах И.А. Оптимизация естественного освещения и инсоляции зданий с криволинейными фасадами // Academia. Архитектура и строительство. 2021. № 2. С. 111–116. doi: 10.22337/2077-9038-2021-2-111-116. EDN KFAAUZ.
  30. Zakirullin R.S. Typology of buildings with grating smart windows with azimuthally optimized light transmission // Journal of Architectural Engineering. 2022. Vol. 28. Issue 4. doi: 10.1061/(ASCE)AE.1943-5568.0000566
  31. Reinhart C.F., Mardaljevic J., Rogers Z. Dyna-mic Daylight Performance Metrics for Sustainable Buil-ding Design // LEUKOS. 2006. Vol. 3. Issue 1. Рр. 7–31. doi: 10.1582/LEUKOS.2006.03.01.001
  32. Hopkinson R.G., Longmore J., Petherbridge P. An Empirical formula for the computation of the indirect component of daylight factor // Transactions of the Illu-minating Engineering Society. 1954. Vol. 19. Issue 7. Рр. 201–219. doi: 10.1177/147715355401900701
  33. Michael P.R., Johnston D.E., Moreno W. A conversion guide: solar irradiance and lux illuminance // Journal of Measurements in Engineering. 2020. Vol. 8. Issue 4. Рр. 153–166. doi: 10.21595/jme.2020.21667

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).