Methodology for determining the design lengths of cross-grid elements of steel supports of overhead transmission lines

Cover Page

Cite item

Full Text

Abstract

Introduction. The total capacity of power plants and the length of power grids in the Russian Federation are significantly increasing every decade due to the constant industrial development of cities and suburbs. This requires the involvement of huge material and labour resources in the sphere of power construction, so all possible ways to reduce the capital intensity of power grids of high and ultra-high voltage classes should be identified and implemented. For practical purposes, in addition to solving the stability problem itself, it is necessary to determine the combination of external loads (torque and longitudinal force) that predetermines the smallest possible value of the critical parameter.Materials and methods. Due to the different lengths of the individual struts of the supports and the increasing forces in the girdles towards the base, the degree of pliability of the nodes to linear and angular displacements is not the same, so that only some struts lose stability. The paper considers a square-section tower with parallel rather than inclined girders, in which the lattice and girders have the same cross-sections, respectively, and an increasing torque and an unchanged longitudinal force applied with respect to the vertical axis of the support act on its free end. Due to the symmetry of the system and internal forces at the moment of loss of stability there will be a symmetric deformation of the struts losing stability. The problem was solved using the system of canonical equations of the displacement method in numerical and analytical formulation. The application of the described methodology for determining the design lengths of the grid struts is considered on the example of the lower section of the support 1P330-1.Results. The considered fragment of the support in terms of structural solution is a spatial rod steel column, the nodes of which are not aligned in adjacent faces and consists of 12 panels. The structural elements of the section are bars made of single angles. The joints are bolted together. The canonical coefficients for the struts of each panel are determined and the stability equation is solved graphically, from which the design length coefficients are found.Conclusions. The presented numerical and analytical method allows to determine the coefficients of design lengths of tower support shaft elements depending on the longitudinal force and the ratio of chord and strut stiffnesses. The obtained coefficients are approximately 10–15 % lower than the existing ones in the domestic standards. As a result, the reserve of bearing capacity of supports is revealed, which indicates the possibility of improving the methodology of solving the problem of stability of elements.

About the authors

A. V. Tanasoglo

Moscow State University of Civil Engineering (National Research University) (MGSU)

Email: a.v.tan@mail.ru
ORCID iD: 0000-0002-1825-2738

I. M. Garanzha

Moscow State University of Civil Engineering (National Research University) (MGSU)

Author for correspondence.
Email: garigo@mail.ru
ORCID iD: 0000-0002-6687-7249

S. R. Fedorova

Moscow State University of Civil Engineering (National Research University) (MGSU)

Email: FedorovaSR@mgsu.ru

References

  1. Тимошенко С.П., Завьялов В.Н. Устойчивость стержней, пластин и оболочек. М. : АСВ, 2013. 808 с.
  2. Tanasoglo A., Garanzha I. Stress-strain state experimental researches of the lattice support pole sections for overhead power transmission line 110 kV // MATEC Web of Conferences. 2018. Vol. 196. Р. 02019. doi: 10.1051/matecconf/201819602019
  3. Перельмутер А.В., Сливкер В.И. Расчетные модели сооружений и возможность их анализа. Киев : СКАД, 2011. 604 с.
  4. Кадисов Г.М. Динамика и устойчивость сооружений. М. : АСВ, 2017. 272 с.
  5. Шевченко Е.В. Анализ критериев устойчивости решетчатых башенных опор ВЛ // Вестник ДонНАСА. 2013. № 13 (4). С. 101–114.
  6. Pustovgar A., Tanasoglo A., Garanzha I., Shilova L., Adamtsevich A. Optimal design of lattice metal constructions of overhead power transmission lines // MATEC Web of Conference. 2016. Vol. 86. Р. 04003. doi: 10.1051/matecconf/20168604003
  7. Смирнов А.Ф., Александров А.В., Лащеников Б.Я., Шапошников Н.Н. Строительная механика. Динамика и устойчивость сооружений. М. : Наука, 2014. 413 с.
  8. Назим Я.В. Особенности проектирования и расчета конструкций переходных опор ВЛ // Современное промышленное и гражданское строительство. 2019. № 11 (3). С. 38–49.
  9. Миронов A.A., Шевченко Е.В. Проблемы устойчивости стержней башенных решетчатых опор воздушных линий электропередачи // Вестник ДонНАСА. 2017. № 3 (113). С. 11–24.
  10. Golikov A., Gubanov V. Atypical structural systems for mobile communication towers // IOP Conference Series : Materials Science and Engineering. 2018. Vol. 365 (5). P. 052010. doi: 10.1088/1757-899X/365/5/052010
  11. Shevchenko Ye., Nazim Y., Tanasoglo A., Garanzha I. Refinement of wind loads on lattice support structures of the intersystem overhead power transmission lines 750 kV // Procedia Engineering. 2015. Vol. 117 (1). Рp. 1033–1040. doi: 10.1016/j.proeng.2015.08.225
  12. Ohsaki M. Optimization of finite dimensional structures. Tokyo : CRC Press Taylor & Francis Group, 2019. 221 p.
  13. Design of latticed steel transmission structures. New York : A.S.C.E, 2021. 98 p.
  14. Bazant Z.P., Cedolin L. Stability of structures: elastic, inelastic, fracture, and damage theories. New York : Oxford University Press, 2010. 1011 p.
  15. Coşkun S.B. Advances in computational stability analysis. Rijeka : InTech, 2018. 132 p.
  16. Winterstetter T., Schmidt H. Stability of circular cylindrical steel shells under combined loading // Thin-Walled Structures. 2012. Vol. 40 (10). Pp. 893–909. doi: 10.1016/S0263-8231(02)00006-X
  17. Yoo C.H., Lee S.C. Stability of structures — principles and applications. New York : Elsevier Academic Press, 2017. 529 p.
  18. Yang B. Stress, strain, and structural dynamics: an interactive handbook of formulas, solutions, and MATLAB Toolboxes. Cambrige : Elsevier Academic Press, 2020. 314 p.
  19. Горохов Е.В., Васылев В.Н. Силовые испытания устойчивости фрагментов опор ВЛ 330кВ // Современное промышленное и гражданское строительство. 2019. Vol. 15 (3). С. 53–62.
  20. Назим Я.В., Горохов Е.В. Оптимизация решетки опор ВЛ по критерию устойчивости стержней // Металлические конструкции. 2017. № 21 (2). С. 20–36.
  21. Саливон Ю.И., Бакаев С.Н. Алгоритм мониторинга технического состояния решетчатых опор высоковольтных линий электропередачи // Металлические конструкции. 2018. № 18 (2). С. 135–149.
  22. Fomenko S.A., Garanzha I.M., Tanasoglo A.V. Damper as a rigid insert for rigid bus structures oscillation damping // Materials Science Forum. 2018. Vol. 931. Pp. 14–18. doi: 10.4028/ href='www.scientific.net/MSF.931.14' target='_blank'>www.scientific.net/MSF.931.14
  23. Fomenko S., Garanzha I., Tanasoglo A., Vershinin V. Theoretical and experimental researches of spring damping flexural oscillations for beam structures // IOP Conference Series: Materials Science and Engineering. 2019. Vol. 661 (1). Р. 012053. doi: 10.1088/1757-899X/661/1/012053

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).