Динамика концентрации нафталина в водной среде в присутствии Bacillus megaterium

Обложка

Цитировать

Полный текст

Аннотация

Изучили экспериментально динамику концентрации нафталина с исходным содержанием 1, 2 и 3 г/л в синтетической сточной воде. Начальное число клеток Bacillus megaterium МК64-1 в среде составило 1,7×107 КОЕ/мл. На 1-е сутки опыта концентрация нафталина снизилась до сотых долей грамма, при этом количество микроорганизмов увеличилось до 109 КОЕ/мл (в вариантах с начальным количеством нафталина 1 и 2 г/л) и до 1011 КОЕ/мл (в вариантах со стартовым количеством нафталина 3 г/л). За 14 суток значение рН среды как в опытных, так и в контрольном вариантах с добавлением суспензии микроорганизмов снизилось в среднем на 0,7 ед. (с 8,56 до 7,86). За это время величина редокс-потенциала среды в опытных вариантах увеличилась в среднем на 70 мВ. Выявлена весьма тесная прямая корреляция (р < 0,05) между исходной концентрацией и количеством деградированного бактериями поллютанта. Определение дегидрогеназной активности Bacillus megaterium двумя методами (с 2,3,5-трифенилтетразолия хлоридом и с метиленовым синим), а также определение чувствительности микроорганизмов к концентрациям углеводорода 1, 2 и 3 г/л диско-диффузионным методом показали отсутствие токсического действия исследуемых концентраций поллютанта на бактерии в условиях опыта. Результаты экспериментальной работы позволяют сделать вывод о способности штамма Bacillus megaterium МК64-1 к биодеструкции нафталина.

Об авторах

С. А. Коваленко

Байкальский музей СО РАН

Email: kovsvan@gmail.com

А. Б. Купчинский

Байкальский музей СО РАН

Email: albor67@mail.ru

Д. И. Стом

Байкальский музей СО РАН ; Сургутский государственный университет ; Иркутский государственный университет ; Иркутский национальный исследовательский технический университет

Email: stomd@mail.ru

Список литературы

  1. Basumatary T., Parthipan P., Sarma H. Microbial contributions in restoring degraded biosphere habitats: comparing natural and engineered approaches // Biotechnology of Emerging Microbes. Prospects for Agriculture and Environment / eds H. Sarma, S.J. Joshi. Elsevier, 2024. P. 107–125. doi: 10.1016/B978-0-443-15397-6.00008-5.
  2. Edo G.I., Itoje-akpokiniovo L.O., Obasohan P., Ikpekoro V.O., Samuel P.O., Jikahet A.N., at al. Impact of environmental pollution from human activities on water, air quality and climate change // Ecological Frontiers. 2024. Vol. 44, no. 5. P. 874–889. doi: 10.1016/j.ecofro.2024.02.014.
  3. Yi Y., Xie B., Zhao T., Li Z., Stom D., Liu H. Effect of external resistance on the sensitivity of microbial fuel cell biosensor for detection of different types of pollutants // Bioelectrochemistry. 2019. Vol. 125. P. 71–78. doi: 10.1016/j.bioelechem.2018.09.003.
  4. Кузьмин В.В., Болдырев К.А. Гидрохимическое моделирование миграции растворенных нефтепродуктов в подземных водах // Водоснабжение и санитарная техника. 2021. N 11. С. 43–51. doi: 10.35776/VST.2021.11.05. EDN: SDOTMG.
  5. Carmichael A.B., Wong L.-L. Protein engineering of Bacillus megaterium CYP102. The oxidation of polycyclic aromatic hydrocarbons // European Journal of Biochemistry. 2001. Vol. 268, no. 10. P. 3117–3125. doi: 10.1046/j.1432-1327.2001.02212.x.
  6. Johnson O.A., Affam A.C. Petroleum sludge treatment and disposal: a review // Environmental Engineering Research. 2019. Vol. 24, no. 2. Р. 191–201. doi: 10.4491/eer.2018.134.
  7. Ali M., Xu D., Yang X., Hu J. Microplastics and PAHs mixed contamination: an in-depth review on the sources, co-occurrence, and fate in marine ecosystems // Water Research. 2024. Vol. 257. Р. 121622. doi: 10.1016/j.watres.2024.121622.
  8. Aydin D.C., Faber S.C., Attiani V., Eskes J., Aldas-Vargas A., Grotenhuis T., et al. Indene, indane and naphthalene in a mixture with BTEX affect aerobic compound biodegradation kinetics and indigenous microbial community development // Chemosphere. 2023. Vol. 340. Р. 139761. doi: 10.1016/j.chemosphere.2023.139761.
  9. Chang Y.-I., Cheng H.-P., Lai S.-H., Ning H. Biodegradation of naphthalene in the oil refinery wastewater by enriched activated sludge // International Biodeterioration & Biodegradation. 2014. Vol. 86. Part C. P. 272–277. doi: 10.1016/j.ibiod.2013.09.018.
  10. Lin C., Gan L., Chen Z., Megharaj M., Naidu R. Biodegradation of naphthalene using a functional biomaterial based on immobilized Bacillus fusiformis (BFN) // Biochemical Engineering Journal. 2014. Vol. 90. P. 1–7. doi: 10.1016/j.bej.2014.05.003.
  11. Rockne K.J., Strand S.E. Anaerobic biodegradation of naphthalene, phenanthrene, and biphenyl by a denitrifying enrichment culture // Water Research. 2001. Vol. 35, no. 1. P. 291–299. doi: 10.1016/S0043-1354(00)00246-3.
  12. Bagi A., Pampanin D.M., Lanzén А., Bilstad T., Kommedal R. Naphthalene biodegradation in temperate and arctic marine microcosms // Biodegradation. 2014. Vol. 25. P. 111–125. doi: 10.1007/s10532-013-9644-3.
  13. Lin C., Gan L., Chen Z.-L. Biodegradation of naphthalene by strain Bacillus fusiformis (BFN) // Journal of Hazardous Materials. 2010. Vol. 182, no. 1-3. P. 771–777. doi: 10.1016/j.jhazmat.2010.06.101.
  14. Shen X., Dong W., Wan Y., Feng K., Liu Y., Wei Y. Influencing mechanisms of siderite and magnetite, on naphthalene biodegradation: Insights from degradability and mineral surface structure // Journal of Environmental Management. 2021. Vol. 299. P. 113648. doi: 10.1016/j.jenvman.2021.113648.
  15. Saeed M., Ilyas N., Bibi F., Jayachandran K., Dattamudi S., Elgorban A.M. Biodegradation of PAHs by Bacillus marsiflavi, genome analysis and its plant growth promoting potential // Environmental Pollution. 2022. Vol. 292. Part B. P. 118343. doi: 10.1016/j.envpol.2021.118343.
  16. Sharma P., Gaur P., Dwivedi S., Kumari K., Srivastava J.K., Dhakar K., et al. Harnessing microbial potentials by advancing bioremediation of PAHs through molecular insights and genetics // International Biodeterioration & Biodegradation. 2024. Vol. 194. P. 105861. doi: 10.1016/j.ibiod.2024.105861.
  17. Кошелева И.А., Кочетков В.В., Филонов А.Е., Пунтус И.Ф., Соколов С.Л., Анохина Т.О.. Плазмиды бактерий рода Pseudomonas // История науки и техники. 2020. N 6. С. 59–78. doi: 10.25791/intstg.06.2020.1192. EDN: QZBECK.
  18. Tarafdar A., Sinha A. Masto R.E. Biodegradation of anthracene by a newly isolated bacterial strain, Bacillus thuringiensis AT.ISM.1, isolated from a fly ash deposition site // Letters in Applied Microbiology. 2017. Vol. 65, no. 4. P. 327–334. doi: 10.1111/lam.12785.
  19. Даниленко А.О., Георгиади А.Г. Влияние современного потепления на водный и ионный сток Северной Двины // Теоретическая и прикладная экология. 2022. N 1. С. 64–69. doi: 10.25750/1995-4301-2022-1-064-069. EDN: AUBAXL.
  20. Лаптев Г.Ю., Йылдырым Е.А., Дуняшев Т.П., Ильина Л.А., Тюрина Д.Г., Филиппова В.А.. Геномный и фенотипический потенциал антимикробной активности штамма бактерии Bacillus megaterium В-4801 // Сельскохозяйственная биология. 2020. Т. 55. N 4. С. 816–829. doi: 10.15389/agrobiology.2020.4.816rus. EDN: ZHGJOC.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).