Changes in some agrophysical characteristics of oil-contaminated soils following their washing with polysorbate 80 solutions

封面

如何引用文章

全文:

详细

The study was aimed at comparing the effect of oil, diesel fuel, and motor oil on the capillary moisture capacity and hygroscopic moisture content of gray forest soil, as well as assessing changes in these characteristics of oil-contaminated soils following their washing with polysorbate 80. Water and a washing solution (with detergent concentrations of 1, 5, and 10 g/L) were added to the soil to be continuously mixed for 1 h at 20 °С using a shaker (60 rpm). The analyzed agrophysical characteristics of soils are shown to decrease when soils are contaminated with oil, diesel fuel, and motor oil at concentrations of 50, 150, and 300 mL/kg. The effect of motor oil on capillary moisture capacity is more pronounced than those of oil and diesel fuel at similar concentrations, while the effect on hygroscopic moisture content is, conversely, less pronounced. The washing of contaminated soils with polysorbate 80 partially restored these agrophysical characteristics; however, they remained lower than those of the original samples. The effectiveness of polysorbate 80 is also confirmed by the reduction in the phytotoxicity of contaminated soil samples following their washing with detergent solutions. At the level of oil contamination of up to 150 mL/kg, solutions containing 5 g/L of polysorbate 80 were found to be more effective, whereas at 300 mL/kg, it is recommended to increase the concentration of detergent up to 10 g/L. The recommended weight ratio of soil, washing solution, and water for soil washing is 1:1:4. Thus, the prospects for using polysorbate 80 to mitigate the negative impact of oil contamination in soil are demonstrated.

作者简介

M. Ryumin

Irkutsk State University

编辑信件的主要联系方式.
Email: maksim.ryumin@mail.ru
ORCID iD: 0009-0006-4762-4613

O. Lopatovskaya

Irkutsk State University

Email: lopatovs@gmail.com
ORCID iD: 0000-0002-5570-545X

D. Stom

Baikal Museum SB RAS; Irkutsk State University; Irkutsk National Research Technical University; Surgut State University

Email: stomd@mail.ru
ORCID iD: 0000-0001-9496-2961

A. Chesnokova

Irkutsk National Research Technical University

Email: chesnokova@istu.edu
ORCID iD: 0000-0002-0326-7224

O. Sutormin

Surgut State University

Email: sutormin_os@surgu.ru
ORCID iD: 0000-0001-9474-0568

A. Kupchinsky

Baikal Museum SB RAS

Email: albor67@mail.ru
ORCID iD: 0000-0001-8884-8636

S. Alferov

Tula State University

Email: s.v.alferov@gmail.com
ORCID iD: 0000-0002-5217-7815

Yu. Petrova

Surgut State University

Email: petrova_juju@surgu.ru
ORCID iD: 0000-0003-3702-2249

Z. Yessimsiitova

Al-Farabi Kazakh National University; Scientific Production-Technical Center “Jalyn”

Email: zura1958@bk.ru
ORCID iD: 0000-0002-4735-2033

V. Fedina

Tula State University

Email: agapovaweronica@yandex.ru
ORCID iD: 0000-0001-5831-123X

Yu. Artemenko

Irkutsk State University

Email: juliapixell@gmail.com
ORCID iD: 0009-0008-4228-778X

参考

  1. Sakhaei Z., Riazi M. In-situ petroleum hydrocarbons contaminated soils remediation by polymer enhanced surfactant flushing: mechanistic investigation // Process Safety and Environmental Protection. 2022. Vol. 161. Р. 758–770. doi: 10.1016/j.psep.2022.03.086.Lovindeer R., Mynott S., Porobic J., Fulton E.A., Hook S.E., Pethybridge H., et al. Ecosystem-level impacts of oil spills: a review of available data with confidence metrics for application to ecosystem models // Environmental Modeling & Assessment. 2023. Vol. 28. Р. 939–960. doi: 10.1007/s10666-023-09905-1.Ifediora N.H., Oti V.O., Adaji A. Changes in physicochemical and heavy metal properties of soil treated with spent engine oil and poultry manure after 12 weeks of growing Phyllanthus urinaria // BIU Journal of Basic and Applied Sciences. 2023. Vol. 8, no. 1. Р. 36–48.Koshlaf E., Ball A.S. Soil bioremediation approaches for petroleum hydrocarbon polluted environments // AIMS Microbiology. 2017. Vol. 3, no. 1. Р. 25–49. doi: 10.3934/microbiol.2017.1.25.Ogbonna D.N. Application of biological methods in the remediation of oil polluted environment in Nigeria // Journal of Advances in Biology & Biotechnology. 2018. Vol. 17, no. 4. P. 1–10. doi: 10.9734/JABB/2018/41036.Abu-Khasan M.S., Makarov Y.I. Analysis of soil contamination with oil and petroleum products // IOP Conference Series: Earth and Environmental Science. 2021. Vol. 937. P. 022046. doi: 10.1088/1755-1315/937/2/022046.Mekonnen B.A., Aragaw T.A., Genet M.B. Bioremediation of petroleum hydrocarbon contaminated soil: a review on principles, degradation mechanisms, and advancements // Frontiers in Environmental Science. 2024. Vol. 12. P. 1354422. doi: 10.3389/fenvs.2024.1354422.Jabbar N.M., Alardhi S.M., Mohammed A.K., Salih I.K., Albayati T.M. Challenges in the implementation of bioremediation processes in petroleum-contaminated soils: a review // Environmental Nanotechnology, Monitoring & Management. 2022. Vol. 18. P. 100694. doi: 10.1016/j.enmm.2022.100694.Ossai I.Ch., Ahmed A., Hassan A., Hamid F.Sh. Remediation of soil and water contaminated with petroleum hydrocarbon: a review // Environmental Technology & Innovation. 2020. Vol. 17. P. 100526. doi: 10.1016/j.eti.2019.100526.Weng M.-C., Lin C.-L., Lee C.-H. Effect of heattreatment remediation on the mechanical behavior of oil-contaminated soil // Applied Sciences. 2020. Vol. 10, no. 9. P. 3174. doi: 10.3390/app10093174.Mambwe M., Kalebaila K.K., Johnson T. Remediation technologies for oil contaminated soil // Global Journal of Environmental Science and Management. 2021. Vol. 7, no. 3. Р. 419–438. doi: 10.22034/gjesm.2021.3.07.Топчий И.А., СтомД.И., Донина К.Ю., Алферов С.В., Нечаева И.А., Купчинский А.Б.. Использование поверхностно-активных веществ в биодеградации гидрофобных соединений: обзор // Известия вузов. Прикладная химия и биотехнология. 2022. Т. 12. N 4. С. 521–537. doi: 10.21285/2227-2925-2022-12-4-521-537. EDN: GCGFRC.Tiwari M., Tripathy D.B. Soil contaminants and their removal through surfactant-enhanced soil remediation: a comprehensive review // Sustainability. 2023. Vol. 15, no. 17. P. 13161. doi: 10.3390/su151713161.Caetano G., de Matos Machado R., Neiva Correia M.J., Marrucho I.M. Remediation of soils contaminated with total petroleum hydrocarbons through soil washing with surfactant solutions // Environmental Technology. 2023. Vol. 45, no. 15. Р. 2969–2982. doi: 10.1080/09593330.2023.2198733.Dos Santos A.V., Simonelli G., dos Santos, L.C.L. Review of the application of surfactants in microemulsion systems for remediation of petroleum contaminated soil and sediments // Environmental Science and Pollution Research. 2023. Vol. 30. Р. 32168–32183. doi: 10.1007/s11356-023-25622-4.Mustapha D.S., Bawa-Allah K.A. Differential toxicities of anionic and nonionic surfactants in fish // Environmental Science and Pollution Research. 2020. Vol. 27. Р. 16754–16762. doi: 10.1007/s11356-020-08212-6.Nunes R.F., Teixeira A.C.S.C. An overview on surfactants as pollutants of concern: occurrence, impacts and persulfate-based remediation technologies // Chemosphere. 2022. Vol. 300. P. 134507. doi: 10.1016/j.chemosphere.2022.134507.Stom D.I., Dolgikh M.M., Titov I.N., Dambaeva G.V., Zhdanova G.O., Stom A.D., et al. Effect of cationic, anionic and non-ionic surfactants on soil oligochaetes Eisenia fetida andrey (Bouche, 1972) // Теорeтическая и прикладная экология. 2024. N 3. С. 133–140. doi: 10.25750/1995-4301-2024-3-133-140. EDN: KHZQEV.Donina K.Yu., Saksonov M.N., Kupchinsky A.B., Cherkasov D.V., Stom D.I. The effect of surfactants on the release of ions from the shoots of Elodea canadensis // AIP Conference Proceedings. 2023. Vol. 2817. P. 020045. doi: 10.1063/5.0148419.Крапивная М.В., Домрачева В.А., Стом Д.И. Влияние поверхностно-активных веществ (додецилсульфата натрия, цетилтриметиламмония бромида) на проницаемость клеточных мембран корнеплодов красной столовой свеклы Beta vulgaris L. // Известия вузов. Прикладная химия и биотехнология. 2023. Т. 13. N 1. С. 50–56. doi: 10.21285/2227-2925-2023-13-1-50-56. EDN: BCBMUZ.Sutormin O.S., Kolosova E.M., Torgashina I.G., Kratasyuk V.A., Kudryasheva N.S., Kinstler J.S., et al. Toxicity of different types of surfactants via cellular and enzymatic assay systems // International Journal of Molecular Sciences. 2023. Vol. 24, no. 1. P. 515. doi: 10.3390/ijms24010515.Yu B., Chiang P.-T. Effect of hydrophobic/hydrophilic groups of surfactants on wax deposition studied by model waxy oil system // SPE International Conference on Oilfield Chemistry. Woodlands, 2023. doi: 10.2118/213821-MS.Javed A., Ali E., Afzal Kh.B., Osman A., Riaz S. Soil fertility: factors affecting soil fertility, and biodiversity responsible for soil fertility // International Journal of Plant, Animal and Environmental Sciences. 2022. Vol. 12. Р. 21–33. doi: 10.26502/ijpaes.202129.Качинский Н.А. Физика почвы. М.: Высшая школа, 1965. 323 с. EDN: YWWBIL.Hewelke E., Gozdowski D. Hydrophysical properties of sandy clay contaminated by petroleum hydrocarbon // Environmental Science and Pollution Research. 2020. Vol. 27. Р. 9697–9706. doi: 10.1007/s11356-020-07627-5.Gordon G., Stavi I., Shavit U., Rosenzweig R. Oil spill effects on soil hydrophobicity and related properties in a hyper-arid region // Geoderma. 2018. Vol. 312. Р. 114–120. doi: 10.1016/j.geoderma.2017.10.008.Bolan Sh., Padhye L.P., Mulligan C.N., Alonso E.R., Saint-Fort R., Jasemizad T., et al. Surfactant-enhanced mobilization of persistent organic pollutants: Potential for soil and sediment remediation and unintended consequences // Journal of Hazardous Materials. 2023. Vol. 443. Part A. P. 130189. doi: 10.1016/j.jhazmat.2022.130189.Liu J.-W., Wei K.-H., Xu S.-W., Cui J., Ma J., Xiao X.-L., et al. Surfactant-enhanced remediation of oil-contaminated soil and groundwater: a review // Science of The Total Environment. 2021. Vol. 756. P. 144142. doi: 10.1016/j.scitotenv.2020.144142.Srivastava V., Puri M., Srivastava T., Nidheesh P.V., Kumar M.S. Integrated soil washing and bioreactor systems for the treatment of hexachlorocyclohexane contaminated soil: a review on enhanced degradation mechanisms, and factors affecting soil washing and bioreactor performances // Environmental Research. 2022. Vol. 208. P. 112752. doi: 10.1016/j.envres.2022.112752.Lowe M.-A., McGrath G., Mathes F., Leopold M. Evaluation of surfactant effectiveness on water repellent soils using electrical resistivity tomography // Agricultural Water Management. 2017. Vol. 181. Р. 56–65. doi: 10.1016/j.agwat.2016.11.013.Ogunmokun F.A., Liu Zh., Wallach R. The influence of surfactant-application method on the effectiveness of water-repellent soil remediation // Geoderma. 2020. Vol. 362. Р. 114081. doi: 10.1016/j.geoderma.2019.114081.Turov Y.P., Guznyaeva M.Y., Lazarev D.A., Petrova Yu Yu., Zhdanova G.O., Stom D.I. Study of sorption and removal of oil hydrocarbons in soil samples // Eurasian Soil Science. 2022. Vol. 55. Р. 830–839. doi: 10.1134/S1064229322060151.

补充文件

附件文件
动作
1. JATS XML


Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).