Theoretical study of carbocation derivatives of ethylene glycol vinyl glycidyl ether via the semiempirical Parametric Method 3
- Authors: Farion I.A.1
-
Affiliations:
- Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 15, No 3 (2025)
- Pages: 328-336
- Section: Chemical Sciences
- URL: https://journals.rcsi.science/2227-2925/article/view/366149
- DOI: https://doi.org/10.21285/achb.984
- EDN: https://elibrary.ru/KAUHFK
- ID: 366149
Cite item
Full Text
Abstract
The study aims to assess how the structure of carbocations, including solvated carbocations – derivatives of ethylene glycol vinyl glycidyl ether (Vinylox) – affects their enthalpy of formation, geometry, and frontier orbital energies via a semiempirical quantum chemical method (Parametric Method 3). In this work, the enthalpy of Vinylox formation was calculated, as well as the energies of frontier (highest occupied and lowest unoccupied) molecular orbitals of carbocations formed during the heterolytic cleavage of vinyl oxide and epoxy groups. The calculations were performed with full geometry optimization. The characteristics of nine model structures (the subject matter of the study) that could potentially participate in cationic macromolecular chain growth processes were determined. It was found how the intramolecular and intermolecular anomeric (“through space”) effects, involving the interaction of simple ether and epoxy oxygens with carbocation centers, affect the enthalpy of formation and frontier orbital energies. In all cases, the spatial geometry of structures with intramolecular anomeric interactions is bent. The geometry of the epoxy carbocation is linear due to the absence of such interactions. These interactions were found to significantly reduce both the enthalpy of carbocation formation and the energy of the highest occupied molecular orbitals. It is possible that such anomeric interactions are of donor-acceptor type, involving the unshared electron pairs of oxygen and the vacant p orbitals of carbocation centers. It is assumed that these interactions also occur in weakly polar aprotic solvents (chlorohydrocarbons), as proven by the example of chloroform.
About the authors
I. A. Farion
Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences
Email: fariv@mail.ru
ORCID iD: 0000-0003-2723-6569
References
- Karthikeyan S., Gupta V.K. Highly reactive polyisobutylene through cationic polymerization of isobutylene // Journal of Polymer Research. 2023. Vol. 30. P. 337. doi: 10.1007/s10965-023-03706-6.
- Deng S., Tian H., Sun D., Liu S., Zhao Q. Method for initiating cationic polymerization of isobutylene by AlCl 3 // Journal of Polymer Research. 2020. Vol. 27. P. 55. doi: 10.1007/s10965-020-2024-x.
- Bentes J., Mangia L.H.R., Vasconcelos M.K., Tatania M., Fidalgo J., Campos D., et al. Cationic polymerization of isobutylene by AlCl 3 in n-hexane and toluene at mild temperatures // Journal of Applied Polymer Science. 2024. Vol. 141, no. 11. P. e55076. doi: 10.1002/app.55076.
- Singha S., Pan S., Tallury S.S., Nguyen G., Tripathy R., De P. Recent developments on cationic polymerization of vinyl ethers // ACS polymers Au. 2024. Vol. 4, no. 3. P. 189–207. doi: 10.1021/acspolymersau.3c00055.
- He Y., Lu Y. Living cationic polymerization of isobutylene in seconds based on microflow system // European Polymer Journal. 2022. Vol. 174. P. 111335. doi: 10.1016/j.eurpolymj.2022.111335.
- Rozentsvet V.A., Sablina N.A., Ulyanova D.M., Tolstoy P.M., Novakov I.A. Polymerization of isoprene using cationic catalytic systems based on triethylaluminum // Doklady Physical Chemistry. 2021. Vol. 499. P. 73–76. doi: 10.1134/S0012501621080017.
- Chen L., Wang Z., Fang E., Fan Z., Song S. Cationic polymerization of vinyl ethers using trifluoromethyl sulfonate/ solvent/ligand to access well-controlled poly(vinyl ether)s // Chemical Science. 2025. Vol. 16, no. 3. P. 1250–1264. doi: 10.1039/d4sc06181k.
- Sorensen C.C., Leibfarth F.A. Stereoselective helixsense-selective cationic polymerization of N-vinylcarbazole using chiral Lewis acid catalysis // Journal of the American Chemical Society. 2022. Vol. 144, no. 19. P. 8487–8492. doi: 10.1021/jacs.2c02738.
- Сангалов Ю.А., Минскер К.С. Полимеры и сополимеры изобутилена: Фундаментальные работы и прикладные аспекты. Уфа: Гилем, 2001. 384 с.
- Софронова О.В., Маркина Е.А., Челнокова С.М., Сахабутдинов А.Г. Вода – классический промотирующий агент каталитического комплекса на основе хлористого алюминия // Вестник Казанского технологического университета. 2011. N 15. С. 71–75. EDN: OFSLUV.
- Трофимов Б.А., Морозова Л.В., Татаринова И.В., Хилько М.Я., Иванова Н.И., Михалева А.И.. Новые каталитические системы для полимеризации виниловых эфиров // Высокомолекулярные соединения. Серия Б. 2002. Т. 44. N 11. С. 2048–2052. EDN: HISTAQ.
- Duan J., Gong Y., Chen D., Ma Y., Songa C., Yang W. Radical homopolymerization of vinyl ethers activated by Li+−π complexation in the presence of CH3OLi and LiI // Polymer Chemistry. 2022. Vol. 13, no. 8. P. 1098–1106. doi: 10.1039/D1PY01619A.
- Раскулова Т.В., Волкова Л.И., Книжник А.В., Халиуллин А.К. Эффект предпоследнего звена в радикальной сополимеризации винилхлорида и непредельных глицидиловых эфиров // Высокомолекулярные Соединения. Серия А. 2000. Т. 42. N 5. С. 744–750.
- Alaaeddine A., Couture G., Ameduri B. An efficient method to synthesize vinyl ethers (VEs) that bear various halogenated or functional groups and their radical copolymerization with chlorotrifluoroethylene (CTFE) to yield functional poly(VE-alt-CTFE) alternated copolymers // Polymer Chemistry. 2013. Vol. 4, no. 16. P. 4335–4347. doi: 10.1039/C3PY00443K.
- Татаринова И.В., Морозова Л.В., Маркова М.В., Васильцов А.М., Иванов А.В., Мячина Г.Ф.. Сополимеризация N-винилпиррол-2-карбальдегидов со стиролом, N-винилпирролидоном и винилглицидиловым эфиром этиленгликоля // Высокомолекулярные соединения. Серия Б. 2011. Т. 53. N 3. С. 475–481. EDN: NEGDKN.
- Motoyanagi J., Oguri A., Minoda M. Synthesis of well-defined alternating copolymer composed of ethylmaleimide and hydroxy-functionalized vinyl ether by RAFT polymerization and their thermoresponsive properties // Polymers. 2020. Vol. 12, no. 10. P. 2255. doi: 10.3390/polym12102255.
- Nishimori K., Cazares-Cortes E., Guigner J.-M., Tournilha, F., Ouchi M. Physical gelation of AB-alternating copolymers made of vinyl phenol and maleimide units: cooperation between precisely incorporated phenol and long alkyl pendant groups // Polymer Chemistry. 2019. Vol. 10, no. 18. P. 2327–2336. doi: 10.1039/C9PY00329K.
- Nishimori K., Tenjimbayashi M., Naito M., Ouchi M. Alternating copolymers of vinyl catechol or vinyl phenol with alkyl maleimide for adhesive and water-repellent coating materials // ACS Applied Polymer Materials. 2020. Vol. 2, no. 11. P. 4604–4612. doi: 10.1021/ACSAPM.0C00682.
- Dolci E., Froidevaux V., Joly-Duhamel C., Auvergne R., Boutevin B., Caillol S. Maleimides as a building block for the synthesis of high performance polymers // Polymer Reviews. 2016. Vol. 56, no. 3. P. 512–556. doi: 10.1080/15583724.2015.1116094.
- Калинина Ф.Э., Могнонов Д.М., Раднаева Л.Д., Васнев В.А. Чередующиеся сополимеры винилглицидилового эфира этиленгликоля и имидов // Высокомолекулярные соединения. Серия А. 2002. Т. 44. N 3. С. 401–406. EDN: KZXXXH.
- Kanazawa A., Aoshima S. Concurrent cationic vinyl-addition and ring-opening copolymerization of vinyl ethers and oxiranes // Polymer Journal. 2016. Vol. 48. P. 679–687. doi: 10.1038/pj.2016.27.
- Holder A.J., Morrill J.A., White D.A., Eick J.D., Chappelow C.C. A semiempirical quantum mechanical study of cationically catalyzed homopolymerization and copolymerization of vinyl ethers and epoxides // Journal of Molecular Structure: Theochem. 2000. Vol. 507, no. 1–3. P. 63–73. doi: 10.1016/S0166-1280(99)00345-0.
Supplementary files


