Utilization of the aqueous phase of the hydrothermal liquefaction process as a substrate for microalgae cultivation
- Authors: Klementev S.V.1, Budenkova E.A.2, Kulikova Y.V.2, Sirotkin A.S.1
-
Affiliations:
- Kazan National Research Technological University
- Immanuel Kant Baltic Federal University
- Issue: Vol 14, No 4 (2024)
- Pages: 537-547
- Section: Physico-chemical biology
- URL: https://journals.rcsi.science/2227-2925/article/view/302278
- DOI: https://doi.org/10.21285/achb.940
- EDN: https://elibrary.ru/EFTDQV
- ID: 302278
Cite item
Full Text
Abstract
About the authors
S. V. Klementev
Kazan National Research Technological University
Email: slava_klementev3715@mail.ru
E. A. Budenkova
Immanuel Kant Baltic Federal University
Email: KBudenkova@gmail.com
Yu. V. Kulikova
Immanuel Kant Baltic Federal University
Email: kulikova.pnipu@gmail.com
A. S. Sirotkin
Kazan National Research Technological University
Email: asirotkin66@gmail.com
References
- Aktas K., Liu H., Eskicioglu C. Treatment of aqueous phase from hydrothermal liquefaction of municipal sludge by adsorption: comparison of biochar, hydrochar, and granular activated carbon // Journal of Environmental Management. 2024. Vol. 356. P. 120619. doi: 10.1016/j.jenvman.2024.120619.
- Basar I.A., Liu H., Eskicioglu C. Incorporating hydrothermal liquefaction into wastewater treatment – Part III: Aqueous phase characterization and evaluation of on-site treatment // Chemical Engineering Journal. 2023. Vol. 467. P. 143422. doi: 10.1016/j.cej.2023.143422.
- Liu H., Lyczko N., Nzihou A., Eskicioglu C. Incorporating hydrothermal liquefaction into wastewater treatment – Part II: Characterization, environmental impacts, and potential applications of hydrochar // Journal of Cleaner Production. 2023. Vol. 383. P. 135398. doi: 10.1016/j.jclepro.2022.135398.
- Liew C.S., Yunus N.M., Chidi B.S., Lam M.K., Goh P.S., Mohamad M., et al. A review on recent disposal of hazardous sewage sludge via anaerobic digestion and novel composting // Journal of Hazardous Materials. 2022. Vol. 423. P. 126995. doi: 10.1016/j.jhazmat.2021.126995.
- Yu J., Audu M., Myint M.T., Cheng F., Jarvis J.M., Jena U., et al. Bio-crude oil production and valorization of hydrochar as anode material from hydrothermal liquefaction of algae grown on brackish dairy wastewater // Fuel Processing Technology. 2022. Vol. 227. P. 107119. doi: 10.1016/j.fuproc.2021.107119.
- Leng L., Zhang W., Leng S., Chen J., Yang L., Li H., et al. Bioenergy recovery from wastewater produced by hydrothermal processing biomass: progress, challenges, and opportunities // Science of the Total Environment. 2020. Vol. 748. P. 142383. doi: 10.1016/j.scitotenv.2020.142383.
- Watson J., Wang T., Si B., Chen W.-T., Aierzhati A., Zhang Y. Valorization of hydrothermal liquefaction aqueous phase: pathways towards commercial viability // Progress in Energy and Combustion Science. 2020. Vol. 77. P. 100819. doi: 10.1016/j.pecs.2019.100819.
- Yuan C., Zhao S., Ni J., He Y., Cao B., Hu Y. Integrated route of fast hydrothermal liquefaction of microalgae and sludge by recycling the waste aqueous phase for microalgal growth // Fuel. 2023. Vol. 334. P. 126488. doi: 10.1016/j.fuel.2022.126488.
- Chen L., Zhu T., Martinez Fernandez J.S., Chen S., Li D. Recycling nutrients from a sequential hydrothermal liquefaction process for microalgae culture // Algal Research. 2017. Vol. 27. P. 311–317. doi: 10.1016/j.algal.2017.09.023.
- Ramírez-Romero A., Martin M., Boyer A., Bolzoni R., Matricon L., Sassi J.-F., et al. Microalgae adaptation as a strategy to recycle the aqueous phase from hydrothermal liquefaction // Bioresource Technology. 2023. Vol. 371. P. 128631. doi: 10.1016/j.biortech.2023.128631.
- Belete Y.Z., Leu S., Boussiba S., Zorin B., Posten C., Thomsen L., et al. Characterization and utilization of hydrothermal carbonization aqueous phase as nutrient source for microalgal growth // Bioresource Technology. 2019. Vol. 290. P. 121758. doi: 10.1016/j.biortech.2019.121758.
- Orfield N.D., Fang A.J., Valdez P.J., Nelson M.C., Savage P.E., Lin X.N., et al. Life cycle design of an algal biorefinery featuring hydrothermal liquefaction: effect of reaction conditions and an alternative pathway including microbial regrowth // ACS Sustainable Chemistry & Engineering. 2014. Vol. 2, no. 4. P. 867–874. doi: 10.1021/sc4004983.
- Jayakody L.N., Johnson C.W., Whitham J.M., Giannone R.J., Black B.A., Cleveland N.S., et al. Thermochemical wastewater valorization via enhanced microbial toxicity tolerance // Energy & Environmental Science. 2018. Vol. 11, no. 6. P. 1625–1638. doi: 10.1039/C8EE00460A.
- Shende A., Nan W., Kodzomoyo E., Shannon J., Nicpon J., Shende R. Evaluation of aqueous product from hydrothermal liquefaction of cardboard as bacterial growth medium: co-liquefaction of cardboard and bacteria for higher bio-oil production // Journal of Sustainable Bioenergy System. 2017. Vol. 7, no. 2. P. 51–64. doi: 10.4236/jsbs.2017.72005.
- He Y., Li X., Xue X., Swita M.S., Schmidt A.J., Yang B. Biological conversion of the aqueous wastes from hydrothermal liquefaction of algae and pine wood by Rhodococci // Bioresource Technology. 2017. Vol. 224. P. 457–464. doi: 10.1016/j.biortech.2016.10.059.
- Клементьев С.В., Сироткин А.С., Хасанова А.А., Куликова Ю.В. Обезвреживание компонентов водной фазы гидротермального ожижения избыточного активного ила в биосорбционных системах // Бутлеровские сообщения. 2024. Т. 77. № 3. С. 113–121. doi: 10.37952/ROI-jbc-01/24-77-3-113. EDN: HIZMCU.
- Синетова М.А., Сидоров Р.А., Стариков А.Ю., Воронков А.С., Медведева А.С., Кривова З.В.. Характеристика биотехнологического потенциала штаммов цианобактерий и микроводорослей коллекции IPPAS // Биотехнология. 2019. Т. 35. N 3. С. 12–29. doi: 10.21519/0234-2758-2019-35-3-12-29. EDN: HVYYGM.
- Pérez-Rodriguez S., Ramírez O.T., Trujillo-Roldán M.A., Valdez-Cruz N.A. Comparison of protein precipitation methods for sample preparation prior to proteomic analysis of Chinese hamster ovary cell homogenates // Electronic Journal of Biotechnology. 2020. Vol. 48. P. 86–94. doi: 10.1016/j.ejbt.2020.09.006.
- Leyva A., Quintana A., Sánchez M., Rodríguez E.N., Cremata J., Sánchez J.C. Rapid and sensitive anthrone-sulfuric acid assay in microplate format to quantify carbohydrate in biopharmaceutical products: method development and validation // Biological. 2008. Vol. 36, no. 2. P. 134–141. doi: 10.1016/j.biologicals.2007.09.001.
- SundarRajan P., Gopinath K.P., Arun J., Grace-Pavithra K., Adithya Joseph A., Manasa S. Insights into valuing the aqueous phase derived from hydrothermal liquefaction // Renewable and Sustainable Energy Reviews. 2021. Vol. 144. P. 111019. doi: 10.1016/j.rser.2021.111019.
- Parsy A., Monlau F., Guyoneaud R., Sambusiti C. Nutrient recovery in effluents from the energy sectors for microalgae and cyanobacteria biomass production: a review // Renewable and Sustainable Energy Reviews. 2024. Vol. 191. P. 114207. doi: 10.1016/j.rser.2023.114207.
- Hasan M.R., Chakrabarti R. Use of algae and aquatic macrophytes as feed in small-scale aquaculture: a review. Rome: Food AND Agriculture Organization of the United Nations, 2009. 135 p.
- Ratha S.K., Renuka N., Abunama T., Rawat I., Bux F. Hydrothermal liquefaction of algal feedstocks: the effect of biomass characteristics and extraction solvents // Renewable and Sustainable Energy Reviews. 2022. Vol. 156. P. 111973. doi: 10.1016/j.rser.2021.111973.
- Haider M.S., Castello D., Rosendahl L.A. Twostage catalytic hydrotreatment of highly nitrogenous biocrude from continuous hydrothermal liquefaction: a rational design of the stabilization stage // Biomass and Bioenergy. 2020. Vol. 139. P. 105658 doi: 10.1016/j.biombioe.2020.105658.
Supplementary files
