Productivity and properties of a Weizmannia coagulans strain capable of synthesizing L-lactic acid
- Authors: Ertiletskaya N.L.1, Sukhanova A.A.1, Boyandin A.N.1, Sereda A.A.1, Syrtsov S.N.1, Prokopchuk Y.A.1
-
Affiliations:
- Reshetnev Siberian State University of Science and Technology
- Issue: Vol 14, No 4 (2024)
- Pages: 525-536
- Section: Physico-chemical biology
- URL: https://journals.rcsi.science/2227-2925/article/view/302277
- DOI: https://doi.org/10.21285/achb.948
- EDN: https://elibrary.ru/QWSTSZ
- ID: 302277
Cite item
Full Text
Abstract
About the authors
N. L. Ertiletskaya
Reshetnev Siberian State University of Science and Technology
Email: natalya.ertiletskaya@gmail.com
A. A. Sukhanova
Reshetnev Siberian State University of Science and Technology
Email: shumilova.ann@mail.ru
A. N. Boyandin
Reshetnev Siberian State University of Science and Technology
Email: boyandin@biopolymer.pro
A. A. Sereda
Reshetnev Siberian State University of Science and Technology
Email: nensi.sereda@mail.ru
S. N. Syrtsov
Reshetnev Siberian State University of Science and Technology
Email: kaideil@list.ru
Yu. A. Prokopchuk
Reshetnev Siberian State University of Science and Technology
Email: batori_bloody@mail.ru
References
- Abedi E., Hashemi S.M.B. Lactic acid production – producing microorganisms and substrates sources-state of art // Heliyon. 2020. Vol. 6, no. 10. P. e04974. doi: 10.1016/j.heliyon.2020.e04974.
- Ojo A.O., de Smidt O. Lactic acid: a comprehensive review of production to purification // Processes. 2023. Vol. 11, no. 3. P. 688. doi: 10.3390/pr11030688.
- Kim J., Kim Y.-M., Lebaka V.R., Wee Y.-J. Lactic acid for green chemical industry: recent advances in and future prospects for production technology, recovery, and applications // Fermentation. 2022. Vol. 8, no. 11. P. 609. doi: 10.3390/fermentation8110609.
- Komesu A., Oliveira J.A.R.d., Martins L.H.d.S., Wolf Maciel M.R., Maciel Filho R. Lactic acid production to purification: a review // BioResources. 2017. Vol. 12, no. 2. P. 4364–4383. doi: 10.15376/biores.12.2.Komesu.
- Auras R., Harte B., Selke S. An overview of polylactides as packaging materials // Macromolecular Bioscience. 2004. Vol. 4, no. 9. P. 835–864. doi: 10.1002/mabi.200400043.
- Tian X., Liu X., Zhang Y., Chen Y., Hang H., Chu J., et al. Metabolic engineering coupled with adaptive evolution strategies for the efficient production of high-quality L-lactic acid by Lactobacillus paracasei // Bioresource Technology. 2021. Vol. 323. P. 124549. doi: 10.1016/j.biortech.2020.124549.
- Kuo Y.-C., Yuan S.-F., Wang C.-A., Huang Y.-J., Guo G.-L., Hwang W.-S. Production of optically pure L-lactic acid from lignocellulosic hydrolysate by using a newly isolated and D-lactate dehydrogenase gene-deficient Lactobacillus paracasei strain // Bioresource Technology. 2015. Vol. 198. P. 651–657. doi: 10.1016/j.biortech.2015.09.071.
- Romanova M.V., Dolbunova A.N., Epishkina Y.M., Evdokimova S.A., Kozlovskiy M.R., Kuznetsov A.Y., et al. A thermophilic L-lactic acid producer of high optical purity: isolation and identification // Foods and Raw Materials. 2024. Vol. 12, no. 1. Р. 101–109. doi: 10.21603/2308-4057-2024-1-591.
- Okano K., Uematsu G., Hama S., Tanaka T., Noda H., Kondo A., et al. Metabolic engineering of Lactobacillus plantarum for direct L-lactic Acid production from raw corn starch // Biotechnology Journal. 2018. Vol. 13, no. 5. P. 1700517. doi: 10.1002/biot.201700517.
- Liu T., Xu X., Liu Y., Li J., Du G., Lv X., et al. Engineered microbial cell factories for sustainable production of L-lactic acid: a critical review // Fermentation. 2022. Vol. 8, no. 6. P. 279. doi: 10.3390/fermentation8060279.
- Kwan T.H., Vlysidis A., Wu Z., Hu Y., Koutinas A., Lin C.S.K. Lactic acid fermentation modelling of Streptococcus thermophilus YI-B1 and Lactobacillus casei Shirota using food waste derived media // Biochemical Engineering Journal. 2017. Vol. 127. P. 97–109. doi: 10.1016/j.bej.2017.08.012.
- Park I., Kim I., Kang K., Sohn H., Rhee I., Jin I., et al. Cellulose ethanol production from waste newsprint by simultaneous saccharification and fermentation using Saccharomyces cerevisiae KNU5377 // Process Biochemistry. 2010. Vol. 45, no. 4. P. 487–492. doi: 10.1016/j.procbio.2009.11.006.
- Gupta R.S., Patel S., Saini N., Chen S. Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species // International Journal of Systematic and Evolutionary Microbiology. 2020. Vol. 70, no. 11. Р. 5753–5798. doi: 10.1099/ijsem.0.004475.
- Konuray G., Erginkaya Z. Potential use of Bacillus coagulans in the food industry // Foods. 2018. Vol. 7, no. 6. P. 92. doi: 10.3390/foods7060092.
- De Clerck E., Rodriguez-Diaz M., Forsyth G., Lebbe L., Logan N.A., De Vos P. Polyphasic characterization of Bacillus coagulans strains, illustrating heterogeneity within this species, and emended description of the species // Systematic and Applied Microbiology. 2004. Vol. 27, no. 1. P. 50–60. doi: 10.1078/0723-2020-00250.
- Bischoff K.M., Liu S., Hughes S.R., Rich J.O. Fermentation of corn fiber hydrolysate to lactic acid by the moderate thermophile Bacillus coagulans // Biotechnology Letters. 2010. Vol. 32. P. 823–828. doi: 10.1007/s10529-010-0222-z.
- Michelson T., Kask K., Jõgi E., Talpsep E., Suitso I., Nurk A. L(+)-Lactic acid producer Bacillus coagulans SIM-7 DSM 14043 and its comparison with Lactobacillus delbrueckii ssp. lactis DSM 20073 // Enzyme and Microbial Technology. 2006. Vol. 39, no. 4. P. 861–867. doi: 10.1016/j.enzmictec.2006.01.015.
- Zhou X., Ye L., Wu J.C. Efficient production of L-lactic acid by newly isolated thermophilic Bacillus coagulans WCP10-4 with high glucose tolerance // Applied Microbiology and Biotechnology. 2013. Vol. 97. P. 4309–4314. doi: 10.1007/s00253-013-4710-7.
- Ye L., Zhou X., Hudari M.S.B., Li Z., Wu J.С. Highly efficient production of L-lactic acid from xylose by newly isolated Bacillus coagulans C106 // Bioresource Technology. 2013. Vol. 132. P. 38–44. doi: 10.1016/j.biortech.2013.01.011.
- Maas R.H.W., Bakker R.R., Jansen M.L.A., Visser D., de Jong E., Eggink G., et al. Lactic acid production from lime-treated wheat straw by Bacillus coagulans: neutralization of acid by fed-batch addition of alkaline substrate // Applied Microbiology and Biotechnology. 2008. Vol. 78. P. 751–758. doi: 10.1007/s00253-008-1361-1.
- Пат. № 2650669, Российская Федерация, C12N 1/19, C12P 7/56, C12R 1/85. Штамм Schizosaccharomyces pombe – продуцент молочной кислоты / Л.Н. Борщевская, Т.Л. Гордеева, М.М. Вустин, М.А. Великая, А.Н. Калинина, С.П. Синеокий. Заявл. 21.12.2016; опубл. 16.04.2018. Бюл. № 11.
- Суханова А.А., Ертилецкая Н.Л., Бояндин А.Н., Сырцов С.Н., Середа А.А., Прокопчук Ю.А.. Исследование характеристик роста штаммов-продуцентов молочной кислоты с использованием глюкозного сиропа в качестве источника углерода // Известия вузов. Прикладная химия и биотехнология. 2023. Т. 13. N 2. С. 245–254. doi: 10.21285/2227-2925-2023-13-2-245-254. EDN: HIUHAE.
- Zhang F., Liu J., Han X., Gao C., Ma C., Tao F., et al. Kinetic characteristics of long-term repeated fed-batch (LtRFb) L-lactic acid fermentation by a Bacillus coagulans strain // Engineering in Life Sciences. 2020. Vol. 20, no. 12. P. 562–570. doi: 10.1002/elsc.202000043.
- Aragno M. Responses of microorganisms to temperature // Physiological plant ecology I: responses to the physical environment / eds O.L. Lange, P.S. Nobel, C.B. Osmond, H. Ziegler. Berlin – Heidelberg: Springer, 1981. P. 339–369. doi: 10.1007/978-3-642-68090-8_12.
- Chen Y., Sun Y., Liu Z., Dong F., Li Y., Wang Y. Genomescale modeling for Bacillus coagulans to understand the metabolic characteristics // Biotechnology and Bioengineering. 2020. Vol. 117, no. 11. P. 3545–3558. doi: 10.1002/bit.27488.
- Chen Y., Dong F., Wang Y. Systematic development and optimization of chemically defined medium supporting high cell density growth of Bacillus coagulans // Applied Microbiology and Biotechnology. 2016. Vol. 100. P. 8121– 8134. doi: 10.1007/s00253-016-7644-z.
- De Oliveira R.A., Schneider R., Rossell C.E.V., Filho R.M., Venus J. Polymer grade L-lactic acid production from sugarcane bagasse hemicellulosic hydrolysate using Bacillus coagulans // Bioresource Technology Reports. 2019. Vol. 6. P. 26–31. doi: 10.1016/j.biteb.2019.02.003.
- Abdel-Rahman M.A., Tashiro Y., Sonomoto K. Recent advances in lactic acid production by microbial fermentation processes // Biotechnology Advances. 2013. Vol. 31, no. 6. P. 877–902. doi: 10.1016/j.biotechadv.2013.04.002.
- Åkerberg C., Hofvendahl K., Zacchi G., Hahn-Hägerdal B. Modelling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production by Lactococcus lactis ssp. lactis ATCC 19435 in whole-wheat flour // Applied Microbiology and Biotechnology. 1998. Vol. 49. P. 682–690. doi: 10.1007/s002530051232.
- Lund P.A., De Biase D., Liran O., Scheler O., Mira N.P., Cetecioglu Z., et al. Understanding how microorganisms respond to acid pH is central to their control and successful exploitation // Frontiers in Microbiology. 2020. Vol. 11. P. 556140. doi: 10.3389/fmicb.2020.556140.
- Juturu V., Wu J.C. Microbial production of lactic acid: the latest development // Critical Reviews in Biotechnology. 2016. Vol. 36, no. 6. P. 967–977. doi: 10.3109/07388551.2015.1066305.
- Guan N., Liu L. Microbial response to acid stress: mechanisms and applications // Applied Microbiology and Biotechnology. 2020. Vol. 104. P. 51–65. doi: 10.1007/s00253-019-10226-1.
- Tian W., Qin J., Lian C., Yao Q., Wang X. Identification of a major facilitator superfamily protein that is beneficial to L-lactic acid production by Bacillus coagulans at low pH // BMC Microbiology. 2022. Vol. 22. P. 310. doi: 10.1186/s12866-022-02736-2.
- Chen Y., Sun Y., Liu Z., Dong F., Li Y., Wang Y. Genomescale modeling for Bacillus coagulans to understand the metabolic characteristics // Biotechnology and Bioengineering. 2020. Vol. 117, no. 11. P. 3545–3558. doi: 10.1002/bit.27488.
Supplementary files
