Effect of increased gene expression of alternative external NADH dehydrogenase of mitochondria of Arabidopsis thaliana on the generation of reactive oxygen in Nicotiana tabacum tobacco leaves at low temperatures
- Authors: Borovskii G.B.1, Gorbyleva E.L.1, Katyshev A.I.1, Korotaeva N.E.1, Polyakova E.A.1, Pyatrikas D.V.1, Stepanov A.V.1, Fedoseeva I.V.1, Shigarova A.M.1
-
Affiliations:
- Siberian Institute of Plant Physiology and Biochemistry SB RAS
- Issue: Vol 14, No 4 (2024)
- Pages: 514-524
- Section: Physico-chemical biology
- URL: https://journals.rcsi.science/2227-2925/article/view/302276
- DOI: https://doi.org/10.21285/achb.943
- EDN: https://elibrary.ru/XNVAAG
- ID: 302276
Cite item
Full Text
Abstract
About the authors
G. B. Borovskii
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Email: borovskii@sifibr.irk.ru
E. L. Gorbyleva
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Email: dzubina@sifibr.irk.ru
A. I. Katyshev
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Email: byacky78@mail.ru
N. E. Korotaeva
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Email: korotaeva73@sifibr.irk.ru
E. A. Polyakova
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Email: polyackova.elizaveta727@yandex.ru
D. V. Pyatrikas
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Email: galdasova@sifibr.irk.ru
A. V. Stepanov
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Email: stepanov@sifibr.irk.ru
I. V. Fedoseeva
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Email: fedoseeva.irina2009@yandex.ru
A. M. Shigarova
Siberian Institute of Plant Physiology and Biochemistry SB RAS
Email: anas_shig@mail.ru
References
- García-Caparrós P., De Filippis L., Gul A., Hasanuzzaman M., Ozturk M., Altay V., et al. Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review // The Botanical Review. 2020. Vol. 87. P. 421–466. doi: 10.1007/s12229-020-09231-1.
- Bartoli C.G., Gómez F., Martínez D.E., Guiamet J.J. Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.) // Journal of Experimental Botany. 2004. Vol. 55, no. 403. P. 1663–1669. doi: 10.1093/jxb/erh199.
- Liberatore K.L., Dukowic-Schulze S., Miller M.E., Chen C., Kianian S.F. The role of mitochondria in plant development and stress tolerance // Free Radical Biology and Medicine. 2016. Vol. 100. P. 238–256. doi: 10.1016/j.freeradbiomed.2016.03.033.
- Sachdev S., Ansari S.A., Ansari M.I., Fujita M., Hasanuzzaman M. Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms // Antioxidants. 2021. Vol. 10, no. 2. P. 277. doi: 10.3390/antiox10020277.
- Møller I.M., Rasmusson A.G., Van Aken O. Plant mitochondria – past, present and future // The Plant Journal. 2021. Vol. 108, no. 4. P. 912–959. doi: 10.1111/tpj.15495.
- Bailey C.D., Carr T.G., Harris S.A., Hughes C.E. Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes // Molecular Phylogenetics and Evolution. 2003. Vol. 29, no. 3. P. 435–455. doi: 10.1016/j.ympev.2003.08.021.
- Saha B., Borovskii G., Panda S.K. Alternative oxidase and plant stress tolerance // Plant Signaling & Behavior. 2016. Vol. 11, no. 12. doi: 10.1080/15592324.2016.1256530.
- Garmash E.V. Role of mitochondrial alternative oxidase in the regulation of cellular homeostasis during development of photosynthetic function in greening leaves // Plant Biology. 2021. Vol. 23, no. 2. P. 221–228. doi: 10.1111/plb.13217.
- Elhafez D., Murcha M.W., Clifton R., Soole K.L., Day D.A., Whelan J. Characterization of mitochondrial alternative NAD(P)H dehydrogenases in Arabidopsis: intraorganelle location and expression // Plant & Cell Physiology. 2006. Vol. 47, no. 1. P. 43–54. doi: 10.1093/pcp/pci221.
- Clifton R., Lister R., Parker K.L. Sappl P.G., Elhafez D., Millar A.H., et al. Stress-induced co-expression of alternative respiratory chain components in Arabidopsis thaliana // Plant Molecular Biology. 2005. Vol. 58. P. 193–212. doi: 10.1007/s11103-005-5514-7.
- Wanniarachchi V.R., Dametto L., Sweetman C., Shavrukov Y., Day D.A., et al. Alternative respiratory pathway component genes (AOX and ND) in rice and barley and their response to stress // International Journal of Molecular Sciences. 2018. Vol. 19, no. 3. P. 915. doi: 10.3390/ijms19030915.
- Popov V.N., Syromyatnikov M.Y., Fernie A.R., Chakraborty S., Gupta K.J., Igamberdiev A.U. The uncoupling of respiration in plant mitochondria: keeping reactive oxygen and nitrogen species under control // Journal of Experimental Botany. 2021. Vol. 72, no. 3. P. 793–807. doi: 10.1093/jxb/eraa510.
- Yerlikaya B.A., Ates D., Abudureyimu B., Aksoy E. Effect of climate change on abiotic stress response gene networks in Arabidopsis thaliana // Principles and practices of OMICS and genome editing for crop improvement / eds C.S. Prakash, S. Fiaz, S. Fahad. Cham: Springer, 2022. P. 149–172. doi: 10.1007/978-3-030-96925-7_6.
- Sweetman C., Waterman C.D., Rainbird B.M., Smith P.M.C., Jenkins C.D., Day D.A., et al. AtNDB2 is the main external NADH dehydrogenase in mitochondria and is important for tolerance to environmental stress // Plant Physiology. 2019. Vol. 181, no. 2. P. 774–788. doi: 10.1104/pp.19.00877.
- Alizadeh R., Kumleh H.H., Rezadoost M.H. The simultaneous activity of cytosolic and mitochondrial antioxidant mechanisms in neutralizing the effect of drought stress in soybean // Plant Physiology Reports. 2023. Vol. 28, no. 1. P. 78–91. doi: 10.1007/s40502-022-00704-6.
- Korotaeva N.E., Shigarova A.M., Katyshev A.I., Fedoseeva I.V., Fedyaeva A.V., Sauchyn D.V., et al. Effect of expression of the NDB2 heterologous gene of Arabidopsis thaliana on growth and respiratory activity of Nicotiana tabacum // Russian Journal of Plant Physiology. 2023. Vol. 70. P. 93. doi: 10.1134/S1021443723600885.
- Боровский Г.Б., Горбылева Е.Л., Катышев А.И., Коротаева Н.Е., Полякова Е.А., Пятрикас Д.В.. Влияние гиперэкспрессии гена альтернативной внешней NADHдегидрогеназы арабидопсиса на устойчивость трансформированных растений табака к отрицательной температуре // Известия вузов. Прикладная химия и биотехнология. 2023. Т. 13. N 4. С. 516–522. doi: 10.21285/2227-2925-2023-13-4-516-522. EDN: FNBXUJ.
- Velikova V., Yordanov I., Edreva A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines // Plant Science. 2000. Vol. 151, no. 1. P. 59–66. doi: 10.1016/S0168-9452(99)00197-1.
- Foyer C.H., Vanacker H., Gomez L.D., Harbinson J. Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures: review // Plant Physiology and Biochemistry. 2002. Vol. 40, no. 6-8. P. 659–668. doi: 10.1016/S0981-9428(02)01425-0.
- Foyer C.H., Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation and practical implications // Antioxidants & Redox Signaling. 2009. Vol. 11, no. 4. P. 861–905. doi: 10.1089/ars.2008.2177.
- Igamberdiev A.U., Bykova N.V. Mitochondria in photosynthetic cells: coordinating redox control and energy balance // Plant Physiology. 2023. Vol. 191, no. 4. P. 2104–2119. doi: 10.1093/plphys/kiac541.
- Shameer S., Ratcliffe R.G., Sweetlove L.J. Leaf energy balance requires mitochondrial respiration and export of chloroplast NADPH in the light // Plant Physiology. 2019. Vol. 180, no. 4. P. 1947–1961. doi: 10.1104/pp.19.00624.
- Gandin A., Duffes C., Day D.A., Cousins A.B. The absence of alternative oxidase AOX1a results in altered response of photosynthetic carbon assimilation to increasing CO2 in Arabidopsis thaliana // Plant and Cell Physiology. 2012. Vol. 53, no. 9. P. 1627–1637. doi: 10.1093/pcp/pcs107.
- Cheng D., Gao H., Zhang L. Upregulation of mitochondrial alternative oxidase pathway protects photosynthetic apparatus against photodamage under chilling stress in Rumex K-1 leaves // Photosynthetica. 2020. Vol. 58, no. 5. P. 1116–1121. doi: 10.32615/ps.2020.060.
- Cheng D.D., Zhang L.T. Mitochondrial alternative oxidase pathway acts as an electron sink during photosynthetic induction in Rumex K-1 leaves // Photosynthetica. 2021. Vol. 59, no. 4. P. 615–624. doi: 10.32615/ps.2021.047.
- Garmash E.V., Velegzhaninov I.O., Ermolina K.V., Rybak A.V., Malyshev R.V. Altered levels of AOX1a expression result in changes in metabolic pathways in Arabidopsis thaliana plants acclimated to low dose rates of ultraviolet B radiation // Plant Science. 2020. Vol. 291. P. 110332. doi: 10.1016/j.plantsci.2019.110332.
- Liu Y.-J., Norberg F.E.B., Szilágyi A., De Paepe R., Åkerlund H.-E., Rasmusson A.G. The mitochondrial external NADPH dehydrogenase modulates the leaf NADPH/NADP+ ratio in transgenic Nicotiana sylvestris // Plant & Cell Physiology. 2008. Vol. 49, no. 2. P. 251–263. doi: 10.1093/pcp/pcn001.
- Jethva J., Lichtenauer S., Schmidt-Schippers R., Steffen-Heins A., Poschet G., Wirtz M., et al. Mitochondrial alternative NADH dehydrogenases NDA1 and NDA2 promote survival of reoxygenation stress in Arabidopsis by safeguarding photosynthesis and limiting ROS generation // New Phytologist. 2023. Vol. 238, no. 1. P. 96–112. doi: 10.1111/nph.18657.
- Borovskii G.B., Korotaeva N.E., Katyshev A.I., Fedoseeva I.V., Fedyaeva A.V., Kondakova M.A., et al. The overexpression of the Arabidopsis NDB2 gene in tobacco plants affects the expression of genes encoding the alternative mitochondrial electron transport pathways and stress proteins // Plant Genetics, Genomics, Bioinformatics, and Biotechnology: abstracts of the 6th International scientific conference (Novosibirsk, 14–18 June 2021). Novosibirsk: Institute of Cytology and Genetics SB RAS, 2021. P. 42. doi: 10.18699/PlantGen2021-026. EDN: NKNKPO.
- Elkelish A., Qari S.H., Mazrou Y.S., Abdelaal K.A., Hafez Y.M., Abu-Elsaoud A.M., et al. Exogenous ascorbic acid induced chilling tolerance in tomato plants through modulating metabolism, osmolytes, antioxidants, and transcriptional regulation of catalase and heat shock proteins // Plants. 2020. Vol. 9, no. 4. P. 431. doi: 10.3390/plants9040431.
- Yurina N.P. Heat shock proteins in plant protection from oxidative stress // Molecular Biology. 2023. Vol. 57. P. 951–964. doi: 10.1134/S0026893323060201.
- Kumar R., Khungar L., Shimphrui R., Tiwari L.D., Tripathi G., Sarkar N.K., et al. AtHsp101 research sets course of action for the genetic improvement of crops against heat stress // Journal of Plant Biochemistry and Biotechnology. 2020. Vol. 29. P. 715-732. doi: 10.1007/s13562-020-00624-2.
- Tiwari L.D., Kumar R., Sharma V., Sahu A.K., Sahu B., Naithani S.C., et al. Stress and development phenotyping of Hsp101 and diverse other Hsp mutants of Arabidopsis thaliana // Journal of Plant Biochemistry and Biotechnology. 2021. Vol. 30. P. 889–905. doi: 10.1007/s13562-021-00706-9.
- McLoughlin F., Basha E., Fowler M.E., Kim M., Bordowitz J., Katiyar-Agarwal S., et al. Class I and II small heat shock proteins together with HSP101 protect protein translation factors during heat stress // Plant Physiology. 2016. Vol. 172, no. 2. P. 1221–1236. doi: 10.1104/pp.16.00536.
- Kim D.H., Xu Z.-Y., Na Y.J., Yoo Y.-J., Lee J., Sohn E.-J., et al. Small heat shock protein Hsp17.8 functions as an AKR2A cofactor in the targeting of chloroplast outer membrane proteins in Arabidopsis // Plant Physiology. 2011. Vol. 157, no. 1. P. 132–146. doi: 10.1104/pp.111.178681.
- Leaden L., Busi M.V., Gomez-Casati D.F. The mitochondrial proteins AtHscB and AtIsu1 involved in Fe–S cluster assembly interact with the Hsp70-type chaperon AtHscA2 and modulate its catalytic activity // Mitochondrion. 2014. Vol. 19. P. 375–381. doi: 10.1016/j.mito.2014.11.002.
- Myouga F., Motohashi R., Kuromori T., Nagata N., Shinozaki K. An Arabidopsis chloroplast-targeted Hsp101 homologue, APG6, has an essential role in chloroplast development as well as heat-stress response // The Plant Journal. 2006. Vol. 48, no. 2. P. 249–260. doi: 10.1111/j.1365-313X.2006.02873.x.
- Oh S.E., Yeung C., Babaei-Rad R., Zhao R. Cosuppression of the chloroplast localized molecular chaperone HSP90.5 impairs plant development and chloroplast biogenesis in Arabidopsis // BMC Research Notes. 2014. Vol. 7. P. 643. doi: 10.1186/1756-0500-7-643.
Supplementary files
