Biotechnological transformation of giant miscanthus biomass into bacterial nanocellulose
- Authors: Shavyrkina N.A.1,2, Gladysheva E.K.1, Zenkova A.A.1,2, Skiba E.А.1
-
Affiliations:
- Institute for Problems of Chemical and Energetic Technologies SB RAS
- Biysk Technological Institute, Polzunov Altai State Technical University
- Issue: Vol 14, No 4 (2024)
- Pages: 504-513
- Section: Physico-chemical biology
- URL: https://journals.rcsi.science/2227-2925/article/view/302275
- DOI: https://doi.org/10.21285/achb.947
- EDN: https://elibrary.ru/PZKEDW
- ID: 302275
Cite item
Full Text
Abstract
About the authors
N. A. Shavyrkina
Institute for Problems of Chemical and Energetic Technologies SB RAS ; Biysk Technological Institute, Polzunov Altai State Technical University
Email: 32nadina@mail.ru
E. K. Gladysheva
Institute for Problems of Chemical and Energetic Technologies SB RAS
Email: evg-gladysheva@yandex.ru
A. A. Zenkova
Institute for Problems of Chemical and Energetic Technologies SB RAS ; Biysk Technological Institute, Polzunov Altai State Technical University
Email: zenkova_nastasya080401@mail.ru
E. А. Skiba
Institute for Problems of Chemical and Energetic Technologies SB RAS
Email: eas08988@mail.ru
References
- Khan S., Ul-Islam M., Fatima A., Manan S., Khattak W.A., Ullah M.W., et al. Potential of food and agro-industrial wastes for cost-effective bacterial cellulose production: an updated review of literature // ES Food & Agroforestry. 2023. Vol. 13. P. 905. doi: 10.30919/esfaf905.
- Avcioglu N.H. Bacterial cellulose: recent progress in production and industrial applications // World Journal of Microbiology and Biotechnology. 2022. Vol. 38. P. 86. doi: 10.1007/s11274-022-03271-y.
- Zhong C. Industrial-scale production and applications of bacterial cellulose // Frontiers in Bioengineering and Biotechnology. 2020. Vol. 8. P. 605374. doi: 10.3389/fbioe.2020.605374.
- Volova T.G., Kiselev E.G., Demidenko A.V., Zhila N.O., Nemtsev I.V., Lukyanenko A.V. Production and properties of microbial polyhydroxyalkanoates synthesized from hydrolysates of Jerusalem artichoke tubers and vegetative biomass // Polymers. 2022. Vol. 14, no. 1. P. 132. doi: 10.3390/polym14010132.
- Ha D.T., Kanarskiy A.V., Kanarskaya Z.A., Scherbakov A.V., Scherbakova E.N., Pranovich A.V. Impact of cultivation conditions on xylanase production and growth in Paenibacillus mucilaginosus // Известия вузов. Прикладная химия и биотехнология. 2020. Т. 10. N 3. С. 459–469. doi: 10.21285/2227-2925-2020-10-3-459-469. EDN: OMLQLP.
- Евстафьев С.Н., Фомина Е.С., Тигунцева Н.П. Термохимическое ожижение соломы пшеницы в среде суб- и сверхкритического тетралина // Известия вузов. Прикладная химия и биотехнология. 2022. Т. 12. N 1. С. 160–166. doi: 10.21285/2227-2925-2022-12-1-160-166. EDN: VQQNNY.
- Shavyrkina N.A., Budaeva V.V., Skiba E.A., Gismatulina Y.A., Sakovich G.V. Review of current prospects for using Miscanthus-based polymers // Polymers. 2023. Vol. 15, no. 14. P. 3097. doi: 10.3390/polym15143097.
- Wang C., Kong Y., Hu R., Zhou G. Miscanthus: a fast-growing crop for environmental remediation and biofuel production // GCB Bioenergy: Bioproducts for a Sustainable Bioeconomy. 2021. Vol. 13, no. 1. P. 58–69. doi: 10.1111/gcbb.12761.
- Banerjee S., Dien B.S., Eilts K.K., Sacks E.J., Singh V. Pilot-scale processing of Miscanthus x giganteus for recovery of anthocyanins integrated with production of microbial lipids and lignin-rich residue // Chemical Engineering Journal. 2024. Vol. 485. P. 150117. doi: 10.1016/j.cej.2024.150117.
- Zabed H., Sahu J.N., Boyce A.N., Faruq G. Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches // Renewable & Sustainable Energy Reviews. 2016. Vol. 66. P. 751–774. doi: 10.1016/j.rser.2016.08.038.
- Kim J.S., Lee Y.Y., Kim T.H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass // Bioresource Technology. 2016. Vol. 199. P. 42-48. doi: 10.1016/j.biortech.2015.08.085.
- Chaudhary G., Chaudhary N., Saini S., Gupta Y., Vivekanand V., Panghal A. Assessment of pretreatment strategies for valorization of lignocellulosic biomass: path forwarding towards lignocellulosic biorefinery // Waste and Biomass Valorization. 2024. Vol. 15. P. 1–36. doi: 10.1007/s12649-023-02219-z.
- Kashcheyeva E.I., Gismatulina Y.A., Budaeva V.V. Pretreatments of non-woody cellulosic feedstocks for bacterial cellulose synthesis // Polymers. 2019. Vol. 11, no. 10. P. 1645. doi: 10.3390/polym11101645.
- Skiba E.A., Gladysheva E.K., Golubev D.S., Budaeva V.V., Aleshina L.A., Sakovich G.V. Selfstandardization of quality of bacterial cellulose produced by Medusomyces gisevii in nutrient media derived from Miscanthus biomass // Carbohydrate Polymers. 2021. Vol. 252. P. 117178. doi: 10.1016/j.carbpol.2020.117178.
- Goh W.N., Rosma A., Kaur B., Fazilah A., Karim A.A., Rajeev B. Fermentation of black tea broth (Kombucha): I. Effects of sucrose concentration and fermentation time on the yield of microbial cellulose // International Food Research Journal. 2012. Vol. 19, no. 1. P. 109–117.
- Gladysheva E.K., Skiba E.A., Zolotukhin V.N., Sakovich G.V. Study of the conditions for the biosynthesis of bacterial cellulose by the producer Medusomyces gisevii Sa-12 // Applied Biochemistry and Microbiology. 2018. Vol. 54. P. 179–187. doi: 10.1134/S0003683818020035.
- Bogolitsyn K., Parshina A., Aleshina L. Structural features of brown algae cellulose // Cellulose. 2020. Vol. 27. P. 9787–9800. doi: 10.1007/s10570-020-03485-z.
- Van der Cruijsen K., Al Hassan M., van Erven G., Dolstra O., Trindade L.M. Breeding targets to improve biomass quality in Miscanthus // Molecules. 2021. Vol. 26, no. 2. P. 254. doi: 10.3390/molecules26020254.
- Rohrbach J.C., Luterbacher J.S. Investigating the effects of substrate morphology and experimental conditions on the enzymatic hydrolysis of lignocellulosic biomass through modeling // Biotechnology for Biofuels and Bioproducts. 2021. Vol. 14. P. 103. doi: 10.1186/s13068-021-01920-2.
- Krystynowicz A., Czaja W., Wiktorowska-Jezierska A., Gonçalves-Miśkiewicz M., Turkiewicz M., Bieleckil S. Factors affecting the yield and properties of bacterial cellulose // Journal of Industrial Microbiology and Biotechnology. 2002. Vol. 29, no. 4. P. 189–195. doi: 10.1038/sj.jim.7000303.
- Yurkevich D.I, Kutyshenko V.P. Medusomyces (tea fungus): a scientific history, composition, features of physiology and metabolism // Biophysics. 2002. Vol. 47, no. 6. P. 1035–1048.
- Hong F., Qiu K. An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770 // Carbohydrate Polymers. 2008. Vol. 72, no. 3. P. 545–549. doi: 10.1016/j.carbpol.2007.09.015.
- Amorim L.F.A., Li L., Gomes A.P., Fangueiro R., Gouveia I.C. Sustainable bacterial cellulose production by low cost feedstock: evaluation of apple and tea by-products as alternative sources of nutrients // Cellulose. 2023. Vol. 30. P. 5589–5606. doi: 10.1007/s10570-023-05238-0.
- Han Y.-H., Mao H.-L., Wang S.-S., Deng J.-C., Chen D.-L., Li M. Ecofriendly green biosynthesis of bacterial cellulose by Komagataeibacter xylinus B2-1 using the shell extract of Sapindus mukorossi Gaertn. as culture medium // Cellulose. 2020. Vol. 27. P. 1255–1272. doi: 10.1007/s10570-019-02868-1.
- Carreira P., Mendes J.A.S., Trovatti E., Serafim L.S., Freire C.S.R., Silvestre A.J.D., et al. Utilization of residues from agro-forest industries in the production of high value bacterial cellulose // Bioresource Technology. 2011. Vol. 102, no. 15. P. 7354–7360. doi: 10.1016/j.biortech.2011.04.081.
- Hestrin S., Schramm M. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose // Biochemical Journal. 1954. Vol. 58, no. 2. P. 345–352. doi: 10.1042/bj0580345.
- Bae S.O., Shoda M. Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor // Applied Microbiology and Biotechnology. 2005. Vol. 67. P. 45–51. doi: 10.1007/s00253-004-1723-2.
- Tsouko E., Kourmentza C., Ladakis D., Kopsahelis N., Mandala I., Papanikolaou S., et al. Bacterial cellulose production from industrial waste and by-product streams // International Journal of Molecular Sciences. 2015. Vol. 16, no. 7. P. 14832–14849. doi: 10.3390/ijms160714832.
- Chen G., Wu G., Chen L., Wang W., Hong F.F., Jönsson L.J. Comparison of productivity and quality of bacterial nanocellulose synthesized using culture media based on seven sugars from biomass // Microbial Biotechnology. 2019. Vol. 12, no. 4. P. 677–687. doi: 10.1111/1751-7915.13401.
- Revin V.V., Liyaskina E.V., Parchaykina M.V., Kuzmenko T.P., Kurgaeva I.V., Revin V.D., et al. Bacterial cellulose-based polymer nanocomposites: a review // Polymers. 2022. Vol. 14, no. 21. P. 4670. doi: 10.3390/polym14214670.
- Kim H., Son J., Lee J., Yoo H.Y., Lee T., Jang M., et al. Improved production of bacterial cellulose through investigation of effects of inhibitory compounds from lignocellulosic hydrolysates // GCB Bioenergy: Bioproducts for a Sustainable Bioeconomy. 2021. Vol. 13, no. 3. P. 436–444. doi: 10.1111/gcbb.12800.
Supplementary files
