Emulsion micro- and nanocapsules of the lactoglobulin concentrate / pectin system with essential oil of Lavandula angustifolia stabilized by ultrasound

Cover Page

Cite item

Full Text

Abstract

Recent years have seen a rapidly growing interest in the use of plant-isolated bioactive compounds as ingredients in functional food and pharmaceuticals. It is known that food matrix, molecular size, external factors, and gastrointestinal environment can interfere with the bioavailability and absorption of such bioactive compounds in the body. The protection of specified compounds via nanoencapsulation technology can improve their stability. The present work is aimed at studying the application of a delivery system based on emulsion micro- and nanocapsules in the protection of bioactive compounds (essential oils), as well as examining the effect of ultrasound of different amplitudes on the stability of emulsion microcapsules in the protein/pectin system with essential oil. The following parameters were determined: average size of obtained microcapsules, zeta potential, specific surface area of the particles, and viscosity of the disperse system. Ultrasound is shown to initiate the formation of a pectin layer, with the charge density varying on the surface of emulsion particles depending on the applied ultrasonic force. The article presents the optimal ultrasound amplitude for the formation of medium-sized particles having a high specific surface area of 32967 cm2 per 1 mL of the emulsion. The obtained nano- and microparticles with essential oil exhibit good antimicrobial, antifungal, and antiviral activities. The developed delivery systems based on food biopolymers with identified characteristics may well meet the requirements of the antibacterial drugs market and find their application in the field of functional food development.

About the authors

Sh. R. Alieva

Institute of Chemistry named after V.I. Nikitin, National Academy of Sciences of Tajikistan ; Research Center for Ecology and Environment of Central Asia

Email: sh_bonu_95@mail.ru

G. A. Qodirova

Institute of Chemistry named after V.I. Nikitin, National Academy of Sciences of Tajikistan

Email: gulruqodirova525@gmail.com

Z. U. Sherova

Institute of Chemistry named after V.I. Nikitin, National Academy of Sciences of Tajikistan

Email: sh.zamira_95@mail.ru

S. R. Usmanova

Institute of Chemistry named after V.I. Nikitin, National Academy of Sciences of Tajikistan

Email: surayo.usmanova@gmail.com

Z. K. Muhidinov

Institute of Chemistry named after V.I. Nikitin, National Academy of Sciences of Tajikistan

Email: zainy@mail.ru

References

  1. Cicero A.F.G., Colletti A. Role of phytochemicals in the management of metabolic syndrome // Phytomedicine. 2016. Vol. 23, no. 11. P. 1134–1144. doi: 10.1016/j.phymed.2015.11.009.
  2. Banwo K., Olojede A.O., Adesulu-Dahunsi A.T., Verma D.K., Thakur M., Tripathy S., et al. Functional importance of bioactive compounds of foods with Potential Health Benefits: a review on recent trends // Food Bioscience. 2021. Vol. 43. P. 101320. doi: 10.1016/j.fbio.2021.101320.
  3. McClements D.J. Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals // Biotechnology Advances. 2020. Vol. 38. P. 107287. doi: 10.1016/j.biotechadv.2018.08.004.
  4. Araiza-Calahorra A., Akhtar M., Sarkar A. Recent advances in emulsion-based delivery approaches for curcumin: from encapsulation to bioaccessibility // Trends in Food Science & Technology. 2018. Vol. 71. P. 155–169. doi: 10.1016/j.tifs.2017.11.009.
  5. Lagoa R., Silva J., Rodrigues J.R., Bishayee A. Advances in phytochemical delivery systems for improved anticancer activity // Biotechnology Advances. 2020. Vol. 38. P. 107382. doi: 10.1016/j.biotechadv.2019.04.004.
  6. Kaur V., Kumar M., Kumar A., Kaur K., Dhillon V., Kaur S. Pharmacotherapeutic potential of phytochemicals: implications in cancer chemo-prevention and future perspectives // Biomedicine & Pharmacotherapy. 2018. Vol. 97. P. 564–586. doi: 10.1016/j.biopha.2017.10.124.
  7. Barba F.J., Mariutti L.R.B., Bragagnolo N., Mercadante A.Z., Barbosa-Cánovas G.V., Orlien V. Bioaccessibility of bioactive compounds from fruits and vegetables after thermal and nonthermal processing // Trends in Food Science & Technology. 2017. Vol. 67. P. 195–206. doi: 10.1016/j.tifs.2017.07.006.
  8. Gleeson J.P. Diet, food components and the intestinal barrier // Nutrition Bulletin. 2017. Vol. 42, no. 2. P. 123–131. doi: 10.1111/nbu.12260.
  9. Zhang R., Belwal T., Li L., Lin X., Xu Y., Luo Z. Recent advances in polysaccharides stabilized emulsions for encapsulation and delivery of bioactive food ingredients: a review // Carbohydrate Polymers. 2020. Vol. 242. P. 116388. doi: 10.1016/j.carbpol.2020.116388.
  10. Anal A.K., Shrestha S., Sadiq M.B. Biopolymeric-based emulsions and their effects during processing, digestibility and bioaccessibility of bioactive compounds in food systems // Food Hydrocolloids. 2019. Vol. 87. P. 691–702. doi: 10.1016/j.foodhyd.2018.09.008.
  11. Nanobiotechnology. Human health and the environment / eds A. Dhawan, S. Singh, A. Kumar, R. Shanker. Boca Raton: CRC Press, 2018. 512 p. doi: 10.1201/9781351031585.
  12. Silva M.P., Fabi J.P. Food biopolymers-derived nanogels for encapsulation and delivery of biologically active compounds: a perspective review // Food Hydrocolloids for Health. 2022. Vol. 2. P. 100079. doi: 10.1016/j.fhfh.2022.100079.
  13. Wei Z., Huang Q. Assembly of protein − polysaccharide complexes for delivery of bioactive ingredients: a perspective paper // Journal of Agricultural and Food Chemistry. 2019. Vol. 67, no. 5. P. 1344–1352. doi: 10.1021/acs.jafc.8b06063.
  14. Anal K., Boonlao N., Ruktanonchai U.R. Emulsion systems stabilized with biopolymers to enhance oral bioaccessibility and bioavailability of lipophilic bioactive compounds // Current Opinion in Food Science. 2023. Vol. 50. P. 101001. doi: 10.1016/j.cofs.2023.101001.
  15. Semenova M. Protein – polysaccharide associative interactions in the design of tailor-made colloidal particles // Current Opinion in Colloid & Interface Science. 2017. Vol. 28. P. 15–21. doi: 10.1016/j.cocis.2016.12.003.
  16. Rezaei A., Fathi M., Jafari S.M. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers // Food Hydrocolloids. 2019. Vol. 88. P. 146–162. doi: 10.1016/j.foodhyd.2018.10.003.
  17. Koksel H., Masatcioglu T., Kahraman K., Ozturk S., Basman A. Improving effect of lyophilization on functional properties of resistant starch preparations formed by acid hydrolysis and heat treatment // Journal of Cereal Science. 2008. Vol. 47, no. 2. P. 275–282. doi: 10.1016/j.jcs.2007.04.007.
  18. Мухидинов З.К., Бобокалонов Д.Т., Усманова С.Р. Пектин – основа для создания функциональной пищи. Душанбе: Изд-во ООО «СифатОфсет», 2019. 192 с.
  19. Rezzoug M., Bakchiche B., Gherib A., Roberta A., FlaminiGuido, Kilincarslan Ö., et al. Chemical composition and bioactivity of essential oils and ethanolic extracts of Ocimum basilicum L. and Thymus algeriensis Boiss. & Reut. from the Algerian Saharan Atlas // BMC Complementary and Alternative Medicine. 2019. Vol. 19. P. 146. doi: 10.1186/s12906-019-2556-y.
  20. Sharopov F., Setzer W.N. Medicinal plants of Tajikistan // Vegetation of Central Asia and environs / eds D. Egamberdieva, M. Öztürk. Cham: Springer, 2018. P. 163–209. doi: 10.1007/978-3-319-99728-5_7.
  21. Yamani H.A., Pang E.C., Mantri N., Deighton M.A. Antimicrobial activity of Tulsi (Ocimum tenuiflorum) essential oil and their major constituents against three species of bacteria // Frontiers in Microbiology. 2016. Vol. 7. P. 681. doi: 10.3389/fmicb.2016.00681.
  22. Rai M., Paralikar P., Jogee P., Agarkar G., Ingle A. P., Derita M., et al. Synergistic antimicrobial potential of essential oils in combination with nanoparticles: emerging trends and future perspectives // International Journal of Pharmaceutics. 2017. Vol. 519, no. 1-2. P. 67–78. doi: 10.1016/j.ijpharm.2017.01.013.
  23. Sokmen A., Abdel-Baki A.-A.S., Al-Malki E.S., Al-Quraishy S., Abdel-Haleem H.M. Constituents of essential oil of Origanum minutiflorum and its in vitro antioxidant, scolicidal and anticancer activities // Journal of King Saud University – Science. 2020. Vol. 32, no. 4. P. 2377–2382. doi: 10.1016/j.jksus.2020.03.018.
  24. Yang K., Liu A., Hu A., Li J., Zen Z., Liu Y., et al. Preparation and characterization of cinnamon essential oil nanocapsules and comparison of volatile components and antibacterial ability of cinnamon essential oil before and after encapsulation // Food Control. 2021. Vol. 123. P. 107783. doi: 10.1016/j.foodcont.2020.107783.
  25. Elsebai M.F., Albalawi M.A. Essential oils and COVID-19 // Molecules. 2022. Vol. 27, no. 22. P. 7893. doi: 10.3390/molecules27227893.
  26. Strub D.J., Talma M., Strub M., Rut W., Zmudzinski M., Brud W., et al. Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts // Scientific Reports. 2022. Vol. 12. P. 14230. doi: 10.1038/s41598-022-18676-w.
  27. Патент № 563, Республика Таджикистан. Флеш способ экстракции пектина из растительного сырья / З.К. Мухидинов, Х.И. Тешаев, А.С. Джонмуродов, Л.С. Лиу. Опубл. 2013. Бюл. № 86.
  28. Мухидинов З.К., Джонмуродов А.С., Тешаев Х.И., Бобокалонов Д.Т., Халикова М.Д., Касымова Г.Ф.. Концентрат лактоглобулинов из молочной сыворотки и методы их выделения // Журнал здравоохранения Таджикистана. 2009. N 5. C. 44–49.
  29. Shamsara O., Jafari S.M., Muhidionv Z.K. Development of double layered emulsion droplets with pectin/β-lactoglobulin complex for bioactive delivery purposes // Journal of Molecular Liquid. 2017. Vol. 243. P. 144–150. doi: 10.1016/j.molliq.2017.08.036.
  30. Kharat M., Zhang G., McClements D.J. Stability of curcumin in oil-in-water emulsions: impact of emulsifier type and concentration on chemical degradation // Food Research International. 2018. Vol. 111. P. 178–186. doi: 10.1016/j.foodres.2018.05.021.
  31. Sze A., Erickson D., Ren L., Li D. Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow // Journal of Colloid and Interface Science. 2003. Vol. 261, no. 2. P. 402–410. doi: 10.1016/S0021-9797(03)00142-5.
  32. Sumalan R.M., Kuganov R., Obistioiu D., Popescu I., Radulov I., Alexa E., et al. Assessment of mint, basil and lavender essential oils vapor-phase in antifungal protection and lemon fruits quality // Molecules. 2020. Vol. 25, no. 8, P. 1831. doi: 10.3390/molecules25081831.
  33. Rashad Y.M., Abdel Razik E.S., Darwish D.B. Essential oil from Lavandula angustifolia elicits expression of three SbWRKY transcription factors and defense-related genes against sorghum damping-off // Scientific Reports. 2022. Vol. 12. P. 857. doi: 10.1038/s41598-022-04903-x.
  34. Wang R., Wang L.-H., Wen Q.-H., He F., Xu F.-Y., Chen B.-R., et al. Combination of pulsed electric field and pH shifting improves the solubility, emulsifying, foaming of commercial soy protein isolate // Food Hydrocolloids. 2023. Vol. 134. P. 108049. doi: 10.1016/j.foodhyd.2022.108049.
  35. O’Sullivan J., Murray B., Flynn C., Norton I. The effect of ultrasound treatment on the structural, physical and emulsifying properties of animal and vegetable proteins // Food Hydrocolloids. 2016. Vol. 53. P. 141–154. doi: 10.1016/j.foodhyd.2015.02.009.
  36. Shamsara O., Muhidinov Z.K., Jafari S.M., Bobokalonov J., Jonmurodov A., Taghvaei M., et al. Effect of ultrasonication, pH and heating on stability of apricot gum-lactoglobuline two-layer nanoemulsions // International Journal of Biological Macromolecules. 2015. Vol. 81. P. 1019–1025. doi: 10.1016/j.ijbiomac.2015.09.056.
  37. Tippetts M., Shen F.K., Martini S. Oil globule microstructure of protein/polysaccharide or protein/protein bilayer emulsions at various pH // Food Hydrocolloids. 2013. Vol. 30, no. 2. P. 559–566. doi: 10.1016/j.foodhyd.2012.07.012.
  38. Neckebroeck B., Verkempinck S.H.E., Vaes G., Wouters K., Magnée J., Hendrickx M.E., et al. Advanced insight into the emulsifying and emulsion stabilizing capacity of carrot pectin subdomains // Food Hydrocolloids. 2020. Vol. 102. P. 105594. doi: 10.1016/j.foodhyd.2019.105594.
  39. Devi N., Sharmah M., Khatun B., Maji T.K. Encapsulation of active ingredients in polysaccharide – protein complex coacervates // Advances in Colloid and Interface Science. 2017. Vol. 239. P. 136–145. doi: 10.1016/j.cis.2016.05.009.
  40. Пономарева Е.И., Молохова Е.И., Холов А.К. Применение эфирных масел в фармации // Современные проблемы науки и образования. 2015. N 4. C. 567. EDN: UDXCBP.
  41. Червоткина Д.Р., Борисова А.В. Антимикробные препараты природного происхождения: обзор свойств и перспективы применения // Известия вузов. Прикладная химия и биотехнология. 2022. Т. 12. N 2. 254–267. doi: 10.21285/2227-2925-2022-12-2-254-267. EDN: EKZZBE.
  42. Yuan C., Wang Y., Liu Y., Cui B. Physicochemical characterization and antibacterial activity assessment of lavender essential oil encapsulated in hydroxypropyl-beta-cyclodextrin // Industrial Crops and Products. 2019. Vol. 130. P. 104–110. doi: 10.1016/J.INDCROP.2018.12.067.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».