Synthesis and antimicrobial activity of functionally substituted 1,3-dioxacycloalkanes
- Authors: Borisova Y.G.1, Bulgakov A.K.2, Khusnutdinova N.S.2, Raskil’dina G.Z.1, Zlotskii S.S.1, Bulgakova A.A.2, Meshcheryakova S.A.2, Sultanova R.M.1
-
Affiliations:
- Ufa State Petroleum Technological University
- Bashkir State Medical University
- Issue: Vol 14, No 4 (2024)
- Pages: 453-461
- Section: Chemical Sciences
- URL: https://journals.rcsi.science/2227-2925/article/view/302270
- DOI: https://doi.org/10.21285/achb.954
- EDN: https://elibrary.ru/OTYUUO
- ID: 302270
Cite item
Full Text
Abstract
One of the directions in the development of organic chemistry is the synthesis of biologically active compounds, including those with bactericidal activity, based on available petrochemical raw materials. In order to expand the library of bioactive compounds containing a 1,3-dioxacyclane fragment, the synthesis of derivatives of 5-acyl-5-isopropyl-1,3-dioxane – 1-(5-isopropyl-1,3-dioxane-5-yl)ethanol and (5-isopropyl-1,3-dioxane-5-yl)ethyl phenyl carbamate was carried out. The effect of synthesized compounds containing a 1,3-dioxacyclane fragment on the growth of strains of gram-negative and gram-positive bacteria, lower fungi Candida albicans was studied. It was found that 2-methyl-2-ethyl-4-chloromethyl-1,3-dioxolane, containing a chloromethyl group, has an antimicrobial effect against gram-positive and gram-negative test cultures and weak antifungal activity (minimum inhibitory concentration is 100 μg/mL) against lower fungi Candida albicans. 1-(5-Isopropyl-1,3-dioxan-5-yl)ethanol exhibits antifungal activity (minimum inhibitory concentration is 2 μg/mL) and sharply reduces antimicrobial activity against Klebsiella pneumonia, Staphylococcus aureus, Enterobacter aerogenes (minimum inhibitory concentration is 100 μg/mL), in contrast to the structurally similar 2-methyl-2-ethyl-4-hydroxymethyl-1,3-dioxolane, which did not show similar properties. 5-Acyl-5-isopropyl-1,3-dioxane, containing a carbonyl group in its structure, showed antimicrobial activity (minimum inhibitory concentration is 25 μg/mL) against gram-negative test cultures, with the exception of Pseudomonas aeruginosa. Heterocycles (2-methyl-2-ethyl-4-chloromethyl-, 2-isobutyl-2,4-dimethyl-, 2-methyl-2-isobutyl-4-chloromethyl- and 2-methyl-2-isobutyl-4-hydroxymethyl-1,3-dioxolane) at concentrations up to 100 μg/mL did not inhibit the vital activity of the studied bacteria and lower fungi. The results obtained show the prospect of continuing the search for new antimicrobial and antifungal drugs of the series of 1,3-dioxacycloalkanes, the structure of which is fundamentally different from the known antibacterial drugs.
Keywords
About the authors
Yu. G. Borisova
Ufa State Petroleum Technological University
Author for correspondence.
Email: yulianna_borisova@mail.ru
A. K. Bulgakov
Bashkir State Medical University
Email: ba-mik@mail.ru
N. S. Khusnutdinova
Bashkir State Medical University
Email: neilyhusnutdinova@yandex.ru
G. Z. Raskil’dina
Ufa State Petroleum Technological University
Email: graskildina444@mail.ru
S. S. Zlotskii
Ufa State Petroleum Technological University
Email: nocturne@mail.ru
A. A. Bulgakova
Bashkir State Medical University
Email: aigulbulbul@gmail.com
S. A. Meshcheryakova
Bashkir State Medical University
Email: svetlanama@mail.ru
R. M. Sultanova
Ufa State Petroleum Technological University
Email: rimmams@yandex.ru
References
- Maximov A.L., Nekhaev A.I., Ramazanov D.N. Ethers and acetals, promising petrochemicals from renewable sources // Petroleum Chemistry. 2015. Vol. 55. P. 1–21. doi: 10.1134/S0965544115010107.
- Опарина Л.А., Колыванов Н.А., Гусарова Н.К., Сапрыгина В.Н. Оксигенатные добавки к топливу на основе возобновляемого сырья // Известия вузов. Прикладная химия и биотехнология. 2018. Т. 8. N. 1. С. 19–34. doi: 10.21285/2227-2925-2018-8-1-19-34. EDN: UQKXXE.
- Ramazanov D.N., Nekhaev A.I., Samoilov V.O., Maximov A.L., Dzhumbe A. Egorova E.V. Reaction between glycerol and acetone in the presence of ethylene glycol // Petroleum Chemistry. 2015. Vol. 55. P. 140–145. doi: 10.1134/S0965544115020152.
- Varfolomeev S.D., Vol’eva V.B., Komissarova N.L., Kurkovskaya L.N., Malkova A.V., Ovsyannikova M.N., et al. New possibilities in the synthesis of fuel oxygenates from renewable sources // Russian Chemical Bulletin. 2019. Vol. 68. P. 717–724. doi: 10.1007/s11172-019-2478-3.
- Раскильдина Г.З., Борисова Ю.Г., Спирихин Л.В., Злотский С.С. Получение и физико-химические характеристики изомерных 2-, 4-замещенных 1,3-диоксациклоалканов // Химия и технология органических веществ. 2019. N 1. С. 4–12. doi: 10.54468/25876724_2019_1_4. EDN: BZCKUO.
- Kadiev K.M., Batov A.E., Dandaev A.U., Kadieva M.Kh., Oknina N.V., Maksimov A.L. Hydrogenation pro- cessing of oil wastes in the presence of ultrafine catalysts // Petroleum Chemistry. 2015. Vol. 55. P. 667–672. doi: 10.1134/S0965544115080083.
- Raskil’dina G.Z., Sultanova R.M., Zlotsky S.S. gem-Dichlorocyclopropanes and 1,3-dioxacyclanes: synthesis based on petroleum products and use in low-tonnage chemistry // Reviews and Advances in Chemistry. 2023. Vol. 13. P. 15–27. doi: 10.1134/S2634827623700150.
- Campos J., Saniger E., Marchal J.A., Aiello S., Suarez I., Boulaiz H., et al. New medium oxacyclic O,N-acetals and related open analogues: biological activities // Current Medicinal Chemistry. 2005. Vol. 12, no. 12. P. 1423–1438. doi: 10.2174/0929867054020927.
- Iovinella I., Mandoli A., Luceri C., D’Ambrosio M., Caputo B., Cobre P., et al. Cyclic acetals as novel longlasting mosquito repellents // Journal of Agricultural and Food Chemistry. 2023. Vol. 71, no. 4. P. 2152–2159. doi: 10.1021/acs.jafc.2c05537.
- Sedrik R., Bonjour O., Laanesoo S., Liblikas I., Pehk T., Jannasch P., et al. Chemically recyclable poly(β-thioether ester)s based on rigid spirocyclic ketal diols derived from citric acid // Biomacromolecules. 2022. Vol. 23, no. 6. P. 2685–2696. doi: 10.1021/acs.biomac.2c00452.
- El Maatougui A., Azuaje J., Coelho A., Cano E., Yanez M., Lopez C., et al. Discovery and preliminary SAR of 5-arylidene-2,2-dimethyl-1,3-dioxane- 4,6-diones as platelet aggregation inhibitors // Combinatorial Chemistry and High Throughput Screening. 2012. Vol. 15, no. 7. P. 551–554. doi: 10.2174/138620712801619122.
- Franchini S., Bencheva L.I., Battisti U.M., Tait A., Sorbi C., Fossa P., et al. Synthesis and biological evaluation of 1,3-dioxolane-based 5-HT1A receptor agonists for CNS disorders and neuropathic pain // Future Medicinal Chemistry. 2018. Vol. 10, no. 18. P. 2137–2154. doi: 10.4155/fmc-2018-0107.
- Zhang Q., Cao R., Liu A., Lei S., Li Y., Yang J., et al. Design, synthesis and evaluation of 2,2-dimethyl-1,3-dioxolane derivatives as human rhinovirus 3C protease inhibitors // Bioorganic & Medicinal Chemistry Letters. 2017. Vol. 27, no. 17. P. 4061–4065. doi: 10.1016/j.bmcl.2017.07.049.
- Раскильдина Г.З., Борисова Ю.Г., Нурланова С.Н., Баширов И.И., Фахретдинова А.К., Пурыгин П.П.. Антикоагуляционная и антиагрегационная активности ряда замещенных гем-дихлорциклопропанов и 1,3-диоксациклоалканов // Бутлеровские сообщения. 2022. Т. 70. N 5. С. 86–91. doi: 10.37952/ROI-jbc-01/22-70-5-86. EDN: SSWALS.
- Min L.-J., Wang H., Bajsa-Hirschel J., Yu C.S., Wang B., Yao M.-M., et al. Novel dioxolane ring compounds for the management of phytopathogen diseases as ergosterol biosynthesis inhibitors: synthesis, biological activities, and molecular docking // Journal of Agricultural and Food Chemistry. 2022. Vol. 70, no. 14. P. 4303–4315. doi: 10.1021/acs.jafc.2c00541.
- Хуснутдинова Н.С., Сахабутдинова Г.Н., Раскильдина Г.З., Мещерякова С.А., Злотский С.С., Султанова Р.М. Синтез и цитотоксическая активность сложных эфиров дитерпеновых кислот, содержащих циклоацетальный фрагмент // Известия высших учебных заведений. Серия Химия и химическая технология. 2022. Т. 65. N 4. С. 6–12. doi: 10.6060/ivkkt.20226504.6516. EDN: KMZYIR.
- Yuan L., Li Z., Zhang X., Yuan X. Crystal structure and biological activity of (3-methyl-1,5-dioxaspiroundecan-3-yl)methanol synthesized with nanosolid superacid // Journal of Nanoscience and Nanotechnology. 2017. Vol. 17, no. 4. P. 2624–2627. doi: 10.1166/jnn.2017.12701.
- Pustylnyak V., Kazakova Y., Yarushkin A., Slynko N., Gulyaeva L. Effect of several analogs of 2,4,6-triphenyldioxane-1,3 on CYP2B induction in mouse liver // Chemico-Biological Interactions. 2011. Vol. 194, no. 2-3. P. 134–138. doi: 10.1016/j.cbi.2011.09.003.
- Sekimata K., Ohnishi T., Mizutani M., Todoroki Y., Han S.Y., Uzawa J., et al. Brz220 Interacts with DWF4, a cytochrome P450 monooxygenase in brassinosteroid biosynthesis, and exerts biological activity // Bioscience, Biotechnology & Biochemistry. 2008. Vol. 72, no. 1. P. 7–12. doi: 10.1271/bbb.70141.
- Schmidt E.Yu., Bidusenko I.A., Ushakov I.A., Trofimov B.A. Unfolding the frontalin chemistry: a facile selective hydrogenation of 7-methylidene-6,8-dioxabicyclooctanes, 2:2 ensembles of ketones and acetylene // Mendeleev Communications. 2018. Vol. 28, no. 5. P. 513–514. doi: 10.1016/j.mencom.2018.09.021.
- Sapozhnikov S.V., Shtyrlin N.V., Kayumov A.R., Zamaldinova A.E., Iksanova A.G., Nikitina Е.V., et al. New quaternary ammonium pyridoxine derivatives: synthesis and antibacterial activity // Medicinal Chemistry Research. 2017. Vol. 26. P. 3188–3202. doi: 10.1007/s00044-017-2012-9.
- Мусин А.И., Борисова Ю.Г., Раскильдина Г.З., Спирихин Л.В., Султанова Р.М., Злотский С.С. Синтез, строение и биологическая активность 2,2,4-тризамещенных 1,3-диоксоланов // Известия высших учебных заведений. Серия Химия и химическая технология. 2023. Т. 66. N 9. С. 20–27. doi: 10.6060/ivkkt.20236609.6829. EDN: OMHWYL.
- Gorrichon J.-P., Gaset A., Delmas M. One-step synthesis of 1,3-dioxanes from ketones and paraformaldehyde with a cation exchange resin as catalyst // Synthesis. 1979. Vol. 3. P. 219. doi: 10.1055/s-1979-28628.
- Мусин А.И., Борисова Ю.Г., Раскильдина Г.З., Даминев Р.Р., Давлетшин А.Р., Злотский С.С. Гетерогенно-каталитическое восстановление замещенных 5-ацил1,3-диоксанов // Тонкие химические технологии. 2022. Т. 17. N 3. С. 201–209. doi: 10.32362/2410-6593-2022-17-3-201-209. EDN: MXMOUE.
Supplementary files
